Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification

Sandhya Koteshwara, K. Parhi
{"title":"Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification","authors":"Sandhya Koteshwara, K. Parhi","doi":"10.1145/3194554.3194603","DOIUrl":null,"url":null,"abstract":"This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"975 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.
使用增量精度和多级分类的物联网应用线性分类器的低能耗架构
本文提出了一种新的增量精度分类方法,可以降低物联网应用中线性分类器的能耗。特征首先被输入到低精度分类器中。如果分类器成功地对样本进行了分类,则该过程终止。否则,通过使用更高精度的分类器来逐步提高分类性能。重复这个过程,直到分类完成。论点是,许多样本可以使用低精度分类器进行分类,从而减少了能量。为了实现增量精度,提出了一种新的数据路径分解方法来设计定宽加法器和乘法器。这些元件提高了精度,而无需重新计算输出,从而减少了能量。通过一个线性分类实例,表明所提出的基于增量精度的多级分类器方法可以减少约41%的能量,同时达到与全精度系统相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信