{"title":"Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification","authors":"Sandhya Koteshwara, K. Parhi","doi":"10.1145/3194554.3194603","DOIUrl":null,"url":null,"abstract":"This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"975 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.