Supervised Multi-view Feature Selection Via Maximum Margin Criterion Joint Distributed Optimization

Qiang Lin
{"title":"Supervised Multi-view Feature Selection Via Maximum Margin Criterion Joint Distributed Optimization","authors":"Qiang Lin","doi":"10.1109/ccis57298.2022.10016341","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel supervised multi-view feature selection method via maximum margin criterion (MMC) joint distributed optimization. Firstly, the proposed method integrates the common loss and the local loss of views to establish the global loss. Further, the view-based MMC regularizer and sparse regularizer are constructed, which can give the selected features better class separability. Then the proposed method combines the distributed alternating direction method of multipliers (DADMM) to design a new algorithm to realize the block-based computation. Numerical experiments verify the effectiveness of the proposed method.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel supervised multi-view feature selection method via maximum margin criterion (MMC) joint distributed optimization. Firstly, the proposed method integrates the common loss and the local loss of views to establish the global loss. Further, the view-based MMC regularizer and sparse regularizer are constructed, which can give the selected features better class separability. Then the proposed method combines the distributed alternating direction method of multipliers (DADMM) to design a new algorithm to realize the block-based computation. Numerical experiments verify the effectiveness of the proposed method.
基于最大余量准则联合分布优化的监督多视图特征选择
提出了一种基于最大余量准则(MMC)联合分布式优化的监督多视图特征选择方法。首先,该方法将视图的公共损失和局部损失综合起来,建立全局损失。在此基础上,构造了基于视图的MMC正则化器和稀疏正则化器,使所选特征具有更好的类可分性。然后结合分布式乘法器交替方向法(DADMM)设计了一种新的算法来实现基于块的计算。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信