Unsupervised fusion for forgery localization exploiting background information

P. Ferrara, M. Fontani, T. Bianchi, A. D. Rosa, A. Piva, M. Barni
{"title":"Unsupervised fusion for forgery localization exploiting background information","authors":"P. Ferrara, M. Fontani, T. Bianchi, A. D. Rosa, A. Piva, M. Barni","doi":"10.1109/ICMEW.2015.7169770","DOIUrl":null,"url":null,"abstract":"When image authenticity verification has to be carried out without any knowledge about the possible processing undergone by the image under analysis, it is fundamental to rely on a multi-clue approach, that merges the information stemming from several complementary forensic tools. This paper introduces a fully automatic framework for fusing the maps created by a set of unsupervised forgery localization algorithms, indicating possible manipulated areas. The framework takes into account the forgery maps, their reliability and the compatibility among the different traces considered by the tools. The achieved localization map is then refined by exploiting image content, thus improving the performance of the proposed system with respect to state of the art approaches.","PeriodicalId":388471,"journal":{"name":"2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2015.7169770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

When image authenticity verification has to be carried out without any knowledge about the possible processing undergone by the image under analysis, it is fundamental to rely on a multi-clue approach, that merges the information stemming from several complementary forensic tools. This paper introduces a fully automatic framework for fusing the maps created by a set of unsupervised forgery localization algorithms, indicating possible manipulated areas. The framework takes into account the forgery maps, their reliability and the compatibility among the different traces considered by the tools. The achieved localization map is then refined by exploiting image content, thus improving the performance of the proposed system with respect to state of the art approaches.
利用背景信息伪造定位的无监督融合
当图像真实性验证必须在不了解被分析图像可能经历的任何处理的情况下进行时,依赖多线索方法是基本的,该方法合并了来自几个互补取证工具的信息。本文介绍了一种全自动框架,用于融合由一组无监督伪造定位算法生成的地图,指出可能被操纵的区域。该框架考虑了伪造映射、它们的可靠性以及工具所考虑的不同轨迹之间的兼容性。然后通过利用图像内容对所获得的定位地图进行细化,从而相对于最先进的方法改进所提出的系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信