Modeling of Thermal Properties of Semiconducting Monolayer MoSe2 and WSe2

Yuvam Bhateja, Joshua Roy Palathinkal, Tamajeet Mandal, P. Roy, D. Saha
{"title":"Modeling of Thermal Properties of Semiconducting Monolayer MoSe2 and WSe2","authors":"Yuvam Bhateja, Joshua Roy Palathinkal, Tamajeet Mandal, P. Roy, D. Saha","doi":"10.1109/VDAT53777.2021.9600966","DOIUrl":null,"url":null,"abstract":"In this work, first-principles based calculations of thermal properties of monolayer group-6 transition metal dichalcogenides (TMDs) viz. MoSe2 and WSe2 are reported. Owing to the distinctive electronic, optical, and thermal properties, the TMDs have emerged as the suitable candidates for designing next-generation ultra-thin nanodevices. Thus, accurate estimation of heat dissipation across any two-dimensional (2D) atomically thin layer has become crucial. In order to determine thermal transport, we need to assess different intrinsic properties of the 2D materials. A large value of thermal conductivity will ensure better heat transmission across the channel of any high-performance device. Therefore, modeling of different parameters such as mode dependent group velocities, phonon mean free path, etc. has become extremely important.In this study, we adopt a multi-scale modeling approach for determining phonon group velocities of semiconducting MoSe2 and WSe2 crystals. Room temperature air stability of single layer MoSe2 and single layer WSe2 are comparable with that of the other group-6 TMDs. Moreover, the semiconducting 2H phases of both the crystals are dynamically stable. The results reported in this work will be useful for developing closed-form expression of specific heat and thermal conductivity of semiconducting TMDs which are the potential channel materials for sub-10 nm channel length transistors.","PeriodicalId":122393,"journal":{"name":"2021 25th International Symposium on VLSI Design and Test (VDAT)","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Symposium on VLSI Design and Test (VDAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT53777.2021.9600966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, first-principles based calculations of thermal properties of monolayer group-6 transition metal dichalcogenides (TMDs) viz. MoSe2 and WSe2 are reported. Owing to the distinctive electronic, optical, and thermal properties, the TMDs have emerged as the suitable candidates for designing next-generation ultra-thin nanodevices. Thus, accurate estimation of heat dissipation across any two-dimensional (2D) atomically thin layer has become crucial. In order to determine thermal transport, we need to assess different intrinsic properties of the 2D materials. A large value of thermal conductivity will ensure better heat transmission across the channel of any high-performance device. Therefore, modeling of different parameters such as mode dependent group velocities, phonon mean free path, etc. has become extremely important.In this study, we adopt a multi-scale modeling approach for determining phonon group velocities of semiconducting MoSe2 and WSe2 crystals. Room temperature air stability of single layer MoSe2 and single layer WSe2 are comparable with that of the other group-6 TMDs. Moreover, the semiconducting 2H phases of both the crystals are dynamically stable. The results reported in this work will be useful for developing closed-form expression of specific heat and thermal conductivity of semiconducting TMDs which are the potential channel materials for sub-10 nm channel length transistors.
半导体单层MoSe2和WSe2的热性能建模
本文报道了基于第一性原理的单层6族过渡金属二硫化物(TMDs)即MoSe2和WSe2的热性质计算。由于其独特的电子、光学和热性能,tmd已成为设计下一代超薄纳米器件的合适候选材料。因此,准确估计任何二维(2D)原子薄层的散热变得至关重要。为了确定热输运,我们需要评估二维材料的不同内在性质。一个大的导热系数值将确保更好的热传递通过任何高性能器件的通道。因此,模相关群速度、声子平均自由程等不同参数的建模变得极其重要。在这项研究中,我们采用多尺度建模方法来确定半导体MoSe2和WSe2晶体的声子群速度。单层MoSe2和单层WSe2的室温空气稳定性与其他6族tmd相当。此外,两种晶体的半导体2H相都是动态稳定的。本文的研究结果将有助于建立半导体tmd的比热和导热系数的封闭表达式,半导体tmd是亚10nm通道长度晶体管的潜在通道材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信