Allocation of Distributed Generation in Distribution Networks Using Specialized Genetic Algorithms

José Santos, L. P. G. Negrete, L. da Cunha Brito
{"title":"Allocation of Distributed Generation in Distribution Networks Using Specialized Genetic Algorithms","authors":"José Santos, L. P. G. Negrete, L. da Cunha Brito","doi":"10.1109/ISGTLatinAmerica52371.2021.9543022","DOIUrl":null,"url":null,"abstract":"This paper makes a comparison of distributed generation allocation in distribution networks using two algorithms based on Genetic Algorithms: the Compact Genetic Algorithm (CGA) and the Chu-Beasley Genetic Algorithm (CBGA). The operations conditions of the network are verified through the backward/forward sweep method. The objective function considered in the optimization model aims at minimizing of total active power losses in the system. The specialized algorithms are tested with three electrical systems: 10-bus, 34-bus, 70-bus and 126-bus and the obtained results show the convergence quickly and the robustness of the implemented algorithms.","PeriodicalId":120262,"journal":{"name":"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper makes a comparison of distributed generation allocation in distribution networks using two algorithms based on Genetic Algorithms: the Compact Genetic Algorithm (CGA) and the Chu-Beasley Genetic Algorithm (CBGA). The operations conditions of the network are verified through the backward/forward sweep method. The objective function considered in the optimization model aims at minimizing of total active power losses in the system. The specialized algorithms are tested with three electrical systems: 10-bus, 34-bus, 70-bus and 126-bus and the obtained results show the convergence quickly and the robustness of the implemented algorithms.
基于专用遗传算法的配电网分布式发电分配
本文比较了两种基于遗传算法的配电网分布式发电分配算法:紧凑遗传算法(Compact Genetic Algorithm, CGA)和Chu-Beasley遗传算法(Chu-Beasley Genetic Algorithm, CBGA)。通过反向/正向扫描方法验证网络的运行情况。优化模型考虑的目标函数是使系统总有功损耗最小。在10总线、34总线、70总线和126总线三种电气系统上对该算法进行了测试,结果表明该算法收敛速度快,鲁棒性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信