Toshiaki Shimada, R. Nisimura, Masayasu Tanaka, Hideki Kawahara, T. Irino
{"title":"Developing a method to build Japanese speech recognition system based on 3-gram language model expansion with Google database","authors":"Toshiaki Shimada, R. Nisimura, Masayasu Tanaka, Hideki Kawahara, T. Irino","doi":"10.1109/ANTHOLOGY.2013.6784781","DOIUrl":null,"url":null,"abstract":"We have developed a method to build a Japanese automatic speech recognition (ASR) system based on 3-gram language model expansion with the Google database. Our aim is to enhance the recognition accuracy of ASR systems based on the 3-gram language model, even in cases where the language model is trained using short text segments. We investigate a practical approach to expanding language models by using 3-gram information from external web documents. In addition, we filter 3-gram entries on the basis of term frequency-inverse document frequency (TF-IDF) scores and the output of the Yahoo! web API to prevent the unnecessary addition of redundant or irrelevant 3-gram entries. In the experiments, we achieved an improvement of 0.71% in the word error rate and proved that the recognition accuracy can be improved by combining the proposed method and the traditional back-off smoothing technique without any costs being incurred in collecting additional text for training the model.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We have developed a method to build a Japanese automatic speech recognition (ASR) system based on 3-gram language model expansion with the Google database. Our aim is to enhance the recognition accuracy of ASR systems based on the 3-gram language model, even in cases where the language model is trained using short text segments. We investigate a practical approach to expanding language models by using 3-gram information from external web documents. In addition, we filter 3-gram entries on the basis of term frequency-inverse document frequency (TF-IDF) scores and the output of the Yahoo! web API to prevent the unnecessary addition of redundant or irrelevant 3-gram entries. In the experiments, we achieved an improvement of 0.71% in the word error rate and proved that the recognition accuracy can be improved by combining the proposed method and the traditional back-off smoothing technique without any costs being incurred in collecting additional text for training the model.