Discrimination between roofing materials and streets within urban areas based on hyperspectral, shape, and context information

M. Mueller, K. Segl, H. Kaufmann
{"title":"Discrimination between roofing materials and streets within urban areas based on hyperspectral, shape, and context information","authors":"M. Mueller, K. Segl, H. Kaufmann","doi":"10.1109/DFUA.2003.1219986","DOIUrl":null,"url":null,"abstract":"In the context of automating the process of urban mapping, hyperspectral imagery allows a detailed differentiation of characteristic surface cover types. Due to the spectral similarity of surface materials used for different surface cover types (e.g. roofing bitumen and asphalt), the spectral information alone cannot solve the ambiguities in the class decision process. Additional knowledge, such as context information, is necessary to improve the mapping of urban surface cover types. In this paper, an existing approach for the combination of hyperspectral data and shape knowledge is extended and improved for further automation of the image analysis. The technique is tested on hyperspectral data of the HyMap sensor. The results demonstrate the potential of this method.","PeriodicalId":308988,"journal":{"name":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFUA.2003.1219986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In the context of automating the process of urban mapping, hyperspectral imagery allows a detailed differentiation of characteristic surface cover types. Due to the spectral similarity of surface materials used for different surface cover types (e.g. roofing bitumen and asphalt), the spectral information alone cannot solve the ambiguities in the class decision process. Additional knowledge, such as context information, is necessary to improve the mapping of urban surface cover types. In this paper, an existing approach for the combination of hyperspectral data and shape knowledge is extended and improved for further automation of the image analysis. The technique is tested on hyperspectral data of the HyMap sensor. The results demonstrate the potential of this method.
基于高光谱、形状和环境信息的城市区域内屋顶材料和街道的区分
在城市制图过程自动化的背景下,高光谱图像允许对特征地表覆盖类型进行详细区分。由于不同表面覆盖类型所用表面材料(如屋面沥青和沥青)的光谱相似性,单靠光谱信息无法解决类别决策过程中的歧义。额外的知识,如背景信息,对于改进城市地表覆盖类型的制图是必要的。本文对现有的高光谱数据与形状知识相结合的方法进行了扩展和改进,以进一步实现图像分析的自动化。该技术在HyMap传感器的高光谱数据上进行了测试。结果证明了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信