{"title":"Distributed small signal model for multi-fingered GaAs PHEMT/MESFET devices","authors":"S. Nash, A. Platzker, W. Struble","doi":"10.1109/MCS.1996.506340","DOIUrl":null,"url":null,"abstract":"A fully distributed equivalent circuit PHEMT and MESFET model is presented in closed form expressions for single finger end-fed FET geometry. The model includes self and mutual inductances and a new frequency dependent gate resistance. The model was used successfully to model multi-fingered devices which were subjected to equi-phase gate and drain excitations. Comparisons between measured data and model results are shown to be in excellent agreement for all S-parameters to 50 GHz regardless of unit gate width. Scaling issues are also investigated for the new distributed model.","PeriodicalId":227834,"journal":{"name":"IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCS.1996.506340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
A fully distributed equivalent circuit PHEMT and MESFET model is presented in closed form expressions for single finger end-fed FET geometry. The model includes self and mutual inductances and a new frequency dependent gate resistance. The model was used successfully to model multi-fingered devices which were subjected to equi-phase gate and drain excitations. Comparisons between measured data and model results are shown to be in excellent agreement for all S-parameters to 50 GHz regardless of unit gate width. Scaling issues are also investigated for the new distributed model.