A Fast Approximate Function Generation Method to ATMR Architecture

Guilherme B. Manske, Clayton R. Farias, P. Butzen, L. Rosa
{"title":"A Fast Approximate Function Generation Method to ATMR Architecture","authors":"Guilherme B. Manske, Clayton R. Farias, P. Butzen, L. Rosa","doi":"10.1109/LASCAS53948.2022.9789047","DOIUrl":null,"url":null,"abstract":"Transistor miniaturization produces circuits with higher transistor density, allowing the development of more complex circuits. On the other hand, the circuit susceptibility to faults is increasing. The Triple Modular Redundancy with a majority voter presents a 100% fault coverage for single faults in the modules, but it has more than 200% of area overhead. Approximate computing is used to create Approximate Triple Modular Redundancy (ATMR) modules, reducing area overhead. This work proposes a fast method to obtain approximate modules for an ATMR architecture. This is done using variables with the highest correlation with the output to create approximate solutions. The generated ATMRs have in the best case an area overhead of 86% and an error rate of 3.6%. Our method generates ATMR functions 7 orders of magnitude faster on average when compared to [1]. Therefore, the proposed method presents higher scalability capable of embracing higher complex-ity designs. The low computational cost of finding the solutions is key to turning feasible using ATMR in complex designs.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"479 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Transistor miniaturization produces circuits with higher transistor density, allowing the development of more complex circuits. On the other hand, the circuit susceptibility to faults is increasing. The Triple Modular Redundancy with a majority voter presents a 100% fault coverage for single faults in the modules, but it has more than 200% of area overhead. Approximate computing is used to create Approximate Triple Modular Redundancy (ATMR) modules, reducing area overhead. This work proposes a fast method to obtain approximate modules for an ATMR architecture. This is done using variables with the highest correlation with the output to create approximate solutions. The generated ATMRs have in the best case an area overhead of 86% and an error rate of 3.6%. Our method generates ATMR functions 7 orders of magnitude faster on average when compared to [1]. Therefore, the proposed method presents higher scalability capable of embracing higher complex-ity designs. The low computational cost of finding the solutions is key to turning feasible using ATMR in complex designs.
ATMR结构的快速近似函数生成方法
晶体管小型化使电路具有更高的晶体管密度,从而可以开发更复杂的电路。另一方面,电路对故障的易感性也在增加。具有多数投票人的三重模块冗余为模块中的单个故障提供了100%的故障覆盖率,但它的面积开销超过200%。近似计算用于创建近似三模冗余(Approximate Triple Modular Redundancy, ATMR)模块,减少了面积开销。本文提出了一种快速获取ATMR结构近似模块的方法。这是通过使用与输出相关度最高的变量来创建近似解来完成的。在最好的情况下,生成的atmr的面积开销为86%,错误率为3.6%。与[1]相比,我们的方法生成ATMR函数的速度平均快了7个数量级。因此,所提出的方法具有较高的可扩展性,能够接受更高复杂性的设计。寻找解决方案的低计算成本是使ATMR在复杂设计中变得可行的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信