{"title":"Self-limited RRAM with ON/OFF resistance ratio amplification","authors":"S. Jo, T. Kumar, C. Zitlaw, H. Nazarian","doi":"10.1109/VLSIT.2015.7223715","DOIUrl":null,"url":null,"abstract":"We demonstrate sub-5nm filament based electrochemical metallization RRAM with self-limited program in a reliable and controllable manner. This RRAM removes the necessity for any external current compliance in a 1TnR (1S1R) architecture. Furthermore, we report a novel technique to amplify RRAM's intrinsic ON/OFF resistance ratio by a factor of >104, which offers significant cell-, circuit- and system-level benefits such as reduced power, reduced BER and increased read bandwidth in high density RRAM.","PeriodicalId":181654,"journal":{"name":"2015 Symposium on VLSI Technology (VLSI Technology)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Symposium on VLSI Technology (VLSI Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2015.7223715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We demonstrate sub-5nm filament based electrochemical metallization RRAM with self-limited program in a reliable and controllable manner. This RRAM removes the necessity for any external current compliance in a 1TnR (1S1R) architecture. Furthermore, we report a novel technique to amplify RRAM's intrinsic ON/OFF resistance ratio by a factor of >104, which offers significant cell-, circuit- and system-level benefits such as reduced power, reduced BER and increased read bandwidth in high density RRAM.