Multiple Levels Perceptual Noise Backed Visual Information Fidelity for Picture Quality Assessment

Chenchen Peng, Mixia Wu, Kaiyuan Liu
{"title":"Multiple Levels Perceptual Noise Backed Visual Information Fidelity for Picture Quality Assessment","authors":"Chenchen Peng, Mixia Wu, Kaiyuan Liu","doi":"10.1109/ISPACS57703.2022.10082853","DOIUrl":null,"url":null,"abstract":"Image Quality Assessment (IQA) is a crucial aspect of image processing. A great deal of works have improved the performance of IQA algorithms, however, the existing classical Visual Information Fidelity (VIF) algorithm has minor limitations: at low scales, fidelity information of images is under-extracted; the variation of perceptual noise of Human Visual System (HVS) with scale is not fully taken into account. In response, this paper proposes an improved VIF-Multiple Levels Perceptual Noise Backed Visual Information Fidelity (MPNVIF), which optimizes the internal algorithm of image information extraction and utilizes multiple levels perceptual noise to enhance the evaluation performance of VIF. Finally, we perform a comparison experiment of MPNVIF algorithm, VIF algorithm and some other objective IQA algorithms on the Industrial Scene Image Database (ISID) database. The results show that compared to related algorithms, the MPNVIF proposed in our paper has better performance on the ISID database.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image Quality Assessment (IQA) is a crucial aspect of image processing. A great deal of works have improved the performance of IQA algorithms, however, the existing classical Visual Information Fidelity (VIF) algorithm has minor limitations: at low scales, fidelity information of images is under-extracted; the variation of perceptual noise of Human Visual System (HVS) with scale is not fully taken into account. In response, this paper proposes an improved VIF-Multiple Levels Perceptual Noise Backed Visual Information Fidelity (MPNVIF), which optimizes the internal algorithm of image information extraction and utilizes multiple levels perceptual noise to enhance the evaluation performance of VIF. Finally, we perform a comparison experiment of MPNVIF algorithm, VIF algorithm and some other objective IQA algorithms on the Industrial Scene Image Database (ISID) database. The results show that compared to related algorithms, the MPNVIF proposed in our paper has better performance on the ISID database.
多层感知噪声支持的图像质量评估视觉信息保真度
图像质量评估(IQA)是图像处理的一个重要方面。大量的工作已经提高了IQA算法的性能,但是现有的经典视觉信息保真度(VIF)算法存在一些局限性:在低尺度下,图像的保真度信息提取不足;没有充分考虑人类视觉系统(HVS)的感知噪声随尺度的变化。为此,本文提出了一种改进的VIF-多级感知噪声支持的视觉信息保真度(MPNVIF)算法,该算法优化了图像信息提取的内部算法,利用多级感知噪声提高了VIF的评价性能。最后,我们在工业场景图像数据库(ISID)上对MPNVIF算法、VIF算法和其他一些客观IQA算法进行了对比实验。结果表明,与相关算法相比,本文提出的MPNVIF在ISID数据库上具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信