{"title":"Design of an STT-MTJ based true random number generator using digitally controlled probability-locked loop","authors":"Satoshi Oosawa, T. Konishi, N. Onizawa, T. Hanyu","doi":"10.1109/NEWCAS.2015.7182089","DOIUrl":null,"url":null,"abstract":"This paper presents a design of a True Random Number Generator (TRNG) using a Spin Transfer Torque Magnetic Tunnel Junction (STT-MTJ) device. Since the probability of the STT-MTJ-based TRNG is locked using a digitally controlled feedback loop, the sensitivity of the feedback gain can be reduced greatly, which eliminates a high-gain amplifier in the feedback loop. It is demonstrated using the circuit simulator (NS-SPICE where the STT-MTJ model is established based on 90nm CMOS/MTJ process technologies) and MATLAB that the random sequences generated from the TRNG become 50%, where the gain of signal converters in the probability-locked loop is the precision of at most 9bit.","PeriodicalId":404655,"journal":{"name":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2015.7182089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
This paper presents a design of a True Random Number Generator (TRNG) using a Spin Transfer Torque Magnetic Tunnel Junction (STT-MTJ) device. Since the probability of the STT-MTJ-based TRNG is locked using a digitally controlled feedback loop, the sensitivity of the feedback gain can be reduced greatly, which eliminates a high-gain amplifier in the feedback loop. It is demonstrated using the circuit simulator (NS-SPICE where the STT-MTJ model is established based on 90nm CMOS/MTJ process technologies) and MATLAB that the random sequences generated from the TRNG become 50%, where the gain of signal converters in the probability-locked loop is the precision of at most 9bit.