DeepNNCar: A Testbed for Deploying and Testing Middleware Frameworks for Autonomous Robots

Matthew P. Burruss, Shreyas Ramakrishna, G. Karsai, A. Dubey
{"title":"DeepNNCar: A Testbed for Deploying and Testing Middleware Frameworks for Autonomous Robots","authors":"Matthew P. Burruss, Shreyas Ramakrishna, G. Karsai, A. Dubey","doi":"10.1109/ISORC.2019.00025","DOIUrl":null,"url":null,"abstract":"This demo showcases the features of an adaptive middleware framework for resource constrained autonomous robots like DeepNNCar (Figure 1). These robots use Learning Enabled Components (LECs), trained with deep learning models to perform control actions. However, these LECs do not provide any safety guarantees and testing them is challenging. To overcome these challenges, we have developed an adaptive middleware framework that (1) augments the LEC with safety controllers that can use different weighted simplex strategies to improve the systems safety guarantees, and (2) includes a resource manager to monitor the resource parameters (temperature, CPU Utilization), and offload tasks at runtime. Using DeepNNCar we will demonstrate the framework and its capability to adaptively switch between the controllers and strategies based on its safety and speed performance.","PeriodicalId":425290,"journal":{"name":"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This demo showcases the features of an adaptive middleware framework for resource constrained autonomous robots like DeepNNCar (Figure 1). These robots use Learning Enabled Components (LECs), trained with deep learning models to perform control actions. However, these LECs do not provide any safety guarantees and testing them is challenging. To overcome these challenges, we have developed an adaptive middleware framework that (1) augments the LEC with safety controllers that can use different weighted simplex strategies to improve the systems safety guarantees, and (2) includes a resource manager to monitor the resource parameters (temperature, CPU Utilization), and offload tasks at runtime. Using DeepNNCar we will demonstrate the framework and its capability to adaptively switch between the controllers and strategies based on its safety and speed performance.
DeepNNCar:用于部署和测试自主机器人中间件框架的测试平台
该演示展示了资源受限自主机器人(如DeepNNCar)的自适应中间件框架的功能(图1)。这些机器人使用学习支持组件(LECs),经过深度学习模型的训练来执行控制动作。然而,这些lec不提供任何安全保证,测试它们是具有挑战性的。为了克服这些挑战,我们开发了一个自适应中间件框架,它(1)用安全控制器增强LEC,这些安全控制器可以使用不同的加权单纯形策略来改进系统安全保证,并且(2)包括一个资源管理器来监视资源参数(温度、CPU利用率),并在运行时卸载任务。使用DeepNNCar,我们将展示该框架及其基于其安全性和速度性能在控制器和策略之间自适应切换的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信