Unsupervised Palm Vein Image Segmentation

Ekaterina Safronova, E. Pavelyeva
{"title":"Unsupervised Palm Vein Image Segmentation","authors":"Ekaterina Safronova, E. Pavelyeva","doi":"10.51130/graphicon-2020-2-3-40","DOIUrl":null,"url":null,"abstract":"In this article the new hybrid algorithm for palm vein image segmentation using convolutional neural network and principal curvatures is proposed. After palm vein image preprocessing vein structure is detected using unsupervised learning approach based on W-Net architecture, that ties together into a single autoencoder two fully convolutional neural network architectures, each simi-lar to the U-Net. Then segmentation results are improved using principal cur-vatures technique. Some vein points with highest maximum principal curva-ture values are selected, and the other vein points are found by moving from starting points along the direction of minimum principal curvature. To obtain the final vein image segmentation the result of intersection of the principal curvatures-based and neural network-based segmentations is taken. The evaluation of the proposed unsupervised image segmentation method based on palm vein recognition results using multilobe differential filters is given. Test results using CASIA multi-spectral palmprint image database show the effectiveness of the proposed segmentation approach.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-3-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article the new hybrid algorithm for palm vein image segmentation using convolutional neural network and principal curvatures is proposed. After palm vein image preprocessing vein structure is detected using unsupervised learning approach based on W-Net architecture, that ties together into a single autoencoder two fully convolutional neural network architectures, each simi-lar to the U-Net. Then segmentation results are improved using principal cur-vatures technique. Some vein points with highest maximum principal curva-ture values are selected, and the other vein points are found by moving from starting points along the direction of minimum principal curvature. To obtain the final vein image segmentation the result of intersection of the principal curvatures-based and neural network-based segmentations is taken. The evaluation of the proposed unsupervised image segmentation method based on palm vein recognition results using multilobe differential filters is given. Test results using CASIA multi-spectral palmprint image database show the effectiveness of the proposed segmentation approach.
无监督掌静脉图像分割
本文提出了一种基于卷积神经网络和主曲率的掌纹图像分割混合算法。在对手掌静脉图像进行预处理后,使用基于W-Net架构的无监督学习方法检测静脉结构,该方法将两个完全卷积的神经网络架构连接到一个自编码器中,每个架构都类似于U-Net。然后利用主曲率技术对分割结果进行改进。选取最大主曲率值最大的脉点,沿最小主曲率方向从起始点开始移动,寻找其他脉点。将基于主曲率的分割和基于神经网络的分割相结合,得到最终的静脉图像分割结果。对基于多瓣差分滤波器的手掌静脉识别结果的无监督图像分割方法进行了评价。基于CASIA多光谱掌纹图像数据库的测试结果表明了该分割方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信