Device Scale Heat Removal for High Power Density GaN Devices

A. Bhunia, A. Brackley, C. Nguyen, B. Brar
{"title":"Device Scale Heat Removal for High Power Density GaN Devices","authors":"A. Bhunia, A. Brackley, C. Nguyen, B. Brar","doi":"10.1109/CSICS.2012.6340114","DOIUrl":null,"url":null,"abstract":"Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) are thermally limited much below the electrical capability of the devices. The unique challenge of a GaN HEMT is its ultra-high heat flux at the micro-scale gate fingers. The traditional packaging and base plate level liquid cooling have limited capability and is far from the heat source, resulting in high thermal resistance from the device junction to the coolant, and ultimately limiting the RF power. We present a device-level high heat flux cooling solution with liquid micro-jet impingement within ~100 μm distance of the heat source. A preliminary demonstration of the technique on a GaN-on-Silicon device shows 50% higher heat dissipation capability, compared to the state-of-the-art pin fin base plate liquid cooling, while maintaining the device junction temperature at 150°C. If the dissipation power level is held constant at 35 W of dissipation power, the technique reduces the device junction temperature by 45°C.","PeriodicalId":290079,"journal":{"name":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2012.6340114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) are thermally limited much below the electrical capability of the devices. The unique challenge of a GaN HEMT is its ultra-high heat flux at the micro-scale gate fingers. The traditional packaging and base plate level liquid cooling have limited capability and is far from the heat source, resulting in high thermal resistance from the device junction to the coolant, and ultimately limiting the RF power. We present a device-level high heat flux cooling solution with liquid micro-jet impingement within ~100 μm distance of the heat source. A preliminary demonstration of the technique on a GaN-on-Silicon device shows 50% higher heat dissipation capability, compared to the state-of-the-art pin fin base plate liquid cooling, while maintaining the device junction temperature at 150°C. If the dissipation power level is held constant at 35 W of dissipation power, the technique reduces the device junction temperature by 45°C.
高功率密度氮化镓器件的器件级散热
氮化镓(GaN)高电子迁移率晶体管(hemt)的热限制远远低于器件的电容量。GaN HEMT的独特挑战是其在微尺度栅指处的超高热流密度。传统的封装和基板级液冷能力有限且远离热源,导致器件结到冷却剂的热阻很高,最终限制了射频功率。本文提出了一种器件级的高热流密度冷却方案,该方案采用液体微射流冲击,距离热源约100 μm。该技术在GaN-on-Silicon器件上的初步演示表明,与最先进的引脚鳍基板液冷相比,该技术的散热能力提高了50%,同时将器件结温保持在150°C。如果保持35w的耗散功率不变,该技术可使器件结温降低45℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信