Dae-Woong Park, Dzuhri Radityo Utomo, Jong-Phil Hong, K. Vaesen, P. Wambacq, Sang-Gug Lee
{"title":"A 247 and 272 GHz Two-Stage Regenerative Amplifiers in 65 nm CMOS with 18 and 15 dB Gain Based on Double-Gmax Gain Boosting Technique","authors":"Dae-Woong Park, Dzuhri Radityo Utomo, Jong-Phil Hong, K. Vaesen, P. Wambacq, Sang-Gug Lee","doi":"10.1109/VLSICircuits18222.2020.9162862","DOIUrl":null,"url":null,"abstract":"This work proposes the concept of double-Gmax (Gmax : maximum achievable gain) core based regenerative amplifier which, in principle, breaks the gain barrier of Gmax (the highest gain that can be obtained from a single transistor) at the frequencies below the maximum oscillation frequency of the transistor. Regenerative amplifiers adopting the proposed double-Gmax core are implemented in a 65 nm CMOS technology and measurements show the peak gain of 18 and 15 dB, 9 and 7.5 dB per stage, at 247 and 272 GHz, respectively.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSICircuits18222.2020.9162862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work proposes the concept of double-Gmax (Gmax : maximum achievable gain) core based regenerative amplifier which, in principle, breaks the gain barrier of Gmax (the highest gain that can be obtained from a single transistor) at the frequencies below the maximum oscillation frequency of the transistor. Regenerative amplifiers adopting the proposed double-Gmax core are implemented in a 65 nm CMOS technology and measurements show the peak gain of 18 and 15 dB, 9 and 7.5 dB per stage, at 247 and 272 GHz, respectively.