Deep Learning Application for Classification of SEFDM Signals

V. Pavlov, S. Zavjalov, S. Volvenko, A. Gorlov
{"title":"Deep Learning Application for Classification of SEFDM Signals","authors":"V. Pavlov, S. Zavjalov, S. Volvenko, A. Gorlov","doi":"10.1109/EExPolytech53083.2021.9614764","DOIUrl":null,"url":null,"abstract":"The paper considers the application of a convolutional neural network for the classification of SEFDM signals for different modulation schemes. A simulation model of the receiver and transmitter has been implemented for the case of a multipath channel and two frequency separations with steps of 0.1 and 0.2. For both cases, the classification accuracy values were obtained, which averaged 99% at signal-to-noise ratio equal to 10 dB.","PeriodicalId":141827,"journal":{"name":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EExPolytech53083.2021.9614764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper considers the application of a convolutional neural network for the classification of SEFDM signals for different modulation schemes. A simulation model of the receiver and transmitter has been implemented for the case of a multipath channel and two frequency separations with steps of 0.1 and 0.2. For both cases, the classification accuracy values were obtained, which averaged 99% at signal-to-noise ratio equal to 10 dB.
深度学习在SEFDM信号分类中的应用
本文研究了卷积神经网络在不同调制方案下的SEFDM信号分类中的应用。在多径信道和两阶频距分别为0.1和0.2的情况下,建立了接收机和发射机的仿真模型。在信噪比为10 dB时,得到了两种情况下的分类精度值,平均为99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信