Analisis Prediktif untuk Keputusan Bisnis : Peramalan Penjualan

A. Husein, Fachrul Rozi Lubis, Muhammad Khoiruddin Harahap
{"title":"Analisis Prediktif untuk Keputusan Bisnis : Peramalan Penjualan","authors":"A. Husein, Fachrul Rozi Lubis, Muhammad Khoiruddin Harahap","doi":"10.47709/dsi.v1i1.1196","DOIUrl":null,"url":null,"abstract":"Peramalan penjualan produk adalah aspek utama dari manajemen pembelian, persediaan yang melebihi permintaan atau kekurangan akan berdampak pada manajemen pelayanan maupun secara ekominis. Makalah ini fokus mencoba menyajikan penerapan analisis prediktif dengan mengadopsi kerangka kerja Data Science (ilmu data) untuk menemukan wawasan yang berguna dalam pengambilan keputusan bisnis khususnya tentang peramalan penjualan produk di masa depan. Kerangka CRISP-DM diusulkan dengan tahapan pemahasan bisnis, pemahaman dan persiapan data, exploratory data analysis (EDA) dan pemodelan. Berdasarkan hasil pengujian data penjualan yang dievaluasi berdasarkan RMSE dan MAE, algoritma XGBoost menghasilkan prediksi berada dalam 1,3% kemudian ARIMA sebesar 1.6%, masih lebih baik dibandingkan LinearRegression, RandomForestdan LSTM dengan tingkat kesalahan sebesar 1.81%, 1.97%, 2.21% pada masing-masing algoritma dari data aktual.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Sciences Indonesia (DSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/dsi.v1i1.1196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Peramalan penjualan produk adalah aspek utama dari manajemen pembelian, persediaan yang melebihi permintaan atau kekurangan akan berdampak pada manajemen pelayanan maupun secara ekominis. Makalah ini fokus mencoba menyajikan penerapan analisis prediktif dengan mengadopsi kerangka kerja Data Science (ilmu data) untuk menemukan wawasan yang berguna dalam pengambilan keputusan bisnis khususnya tentang peramalan penjualan produk di masa depan. Kerangka CRISP-DM diusulkan dengan tahapan pemahasan bisnis, pemahaman dan persiapan data, exploratory data analysis (EDA) dan pemodelan. Berdasarkan hasil pengujian data penjualan yang dievaluasi berdasarkan RMSE dan MAE, algoritma XGBoost menghasilkan prediksi berada dalam 1,3% kemudian ARIMA sebesar 1.6%, masih lebih baik dibandingkan LinearRegression, RandomForestdan LSTM dengan tingkat kesalahan sebesar 1.81%, 1.97%, 2.21% pada masing-masing algoritma dari data aktual.
商业决策的预测分析:销售预测
产品销售是采购管理的一个主要方面,超过需求或短缺的供应将对服务管理和生态环境产生影响。本文试图通过采用数据科学框架来实现预测分析的应用,在商业决策中寻找对未来产品销售的有用见解。CRISP-DM框架的建议包括业务中和、理解和数据准备阶段、探索数据分析(EDA)和建模。根据RMSE和MAE的销售数据测试结果,XGBoost算法得出的预测是1.3%之后的ARIMA是1.6%,仍然比linearforestest和LSTM的误差率为1.81%,1.97%,2.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信