Fault estimation in a class of first order nonlinear systems

R. Fonod, D. Gontkovič
{"title":"Fault estimation in a class of first order nonlinear systems","authors":"R. Fonod, D. Gontkovič","doi":"10.1109/SAMI.2011.5738897","DOIUrl":null,"url":null,"abstract":"Reformulated principle of fault estimation design for one class of first order continuous-time nonlinear system is treated in this paper, where a neural network is regarded as model-free fault approximator. The problem addressed is presented as approach based on sliding mode methodology with combination of radial basis function neural network to design robust nonlinear fault estimation. The method utilizes Lyapunov function and the steepest descent rule to guarantee the convergence of the estimation error asymptotically. Simulation results show the feasibility of the proposed approach.","PeriodicalId":202398,"journal":{"name":"2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2011.5738897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Reformulated principle of fault estimation design for one class of first order continuous-time nonlinear system is treated in this paper, where a neural network is regarded as model-free fault approximator. The problem addressed is presented as approach based on sliding mode methodology with combination of radial basis function neural network to design robust nonlinear fault estimation. The method utilizes Lyapunov function and the steepest descent rule to guarantee the convergence of the estimation error asymptotically. Simulation results show the feasibility of the proposed approach.
一类一阶非线性系统的故障估计
本文讨论了一类一阶连续时间非线性系统的故障估计设计原理,将神经网络作为无模型故障逼近器。提出了基于滑模方法结合径向基函数神经网络设计鲁棒非线性故障估计的方法。该方法利用Lyapunov函数和最陡下降规则来保证估计误差的渐近收敛。仿真结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信