A Note on Karl Pearson’s 1900 Chi-Squared Test: Two Derivations of the Asymptotic Distribution, and Uses in Goodness of Fit and Contingency Tests of Independence, and a Comparison with the Exact Sample Variance Chi-Square Result

T. Crack
{"title":"A Note on Karl Pearson’s 1900 Chi-Squared Test: Two Derivations of the Asymptotic Distribution, and Uses in Goodness of Fit and Contingency Tests of Independence, and a Comparison with the Exact Sample Variance Chi-Square Result","authors":"T. Crack","doi":"10.2139/ssrn.3284255","DOIUrl":null,"url":null,"abstract":"Karl Pearson’s chi-squared test is widely known and used, both as a goodness-of-fit test for hypothesized distributions or frequencies, and in tests of independence in contingency tables. The test was introduced in Pearson (1900), but the derivation in that paper is almost incomprehensible. Two derivations of the asymptotic distribution are given here. The first uses joint characteristic functions, and the second uses a multivariate central limit theorem. Goodness-of-fit tests and contingency table tests of independence are discussed, and the asymptotic chi-square distribution result for Pearson’s test statistic is compared and contrasted with the exact chi-square result for the sample variance estimator.","PeriodicalId":202880,"journal":{"name":"Research Methods & Methodology in Accounting eJournal","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods & Methodology in Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3284255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Karl Pearson’s chi-squared test is widely known and used, both as a goodness-of-fit test for hypothesized distributions or frequencies, and in tests of independence in contingency tables. The test was introduced in Pearson (1900), but the derivation in that paper is almost incomprehensible. Two derivations of the asymptotic distribution are given here. The first uses joint characteristic functions, and the second uses a multivariate central limit theorem. Goodness-of-fit tests and contingency table tests of independence are discussed, and the asymptotic chi-square distribution result for Pearson’s test statistic is compared and contrasted with the exact chi-square result for the sample variance estimator.
卡尔·皮尔逊1900卡方检验的注解:渐近分布的两种推导及其在拟合优度检验和偶然性检验中的应用,以及与精确样本方差卡方结果的比较
卡尔·皮尔逊的卡方检验被广泛使用,既可以作为假设分布或频率的拟合良好度检验,也可以用于列联表的独立性检验。皮尔逊(Pearson)在1900年提出了这个测试,但在那篇论文中的推导几乎是不可理解的。本文给出了渐近分布的两个推导式。第一个使用联合特征函数,第二个使用多元中心极限定理。讨论了拟合优度检验和独立性列联表检验,并将Pearson检验统计量的渐近卡方分布结果与样本方差估计量的精确卡方结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信