Thrust-to-Weight Ratio Optimization for Multi-Rotor Drones Using Neural Network with Six Input Parameters

Tony Oliver Mogorosi, R. Jamisola, N. Subaschandar, L. O. Mohutsiwa
{"title":"Thrust-to-Weight Ratio Optimization for Multi-Rotor Drones Using Neural Network with Six Input Parameters","authors":"Tony Oliver Mogorosi, R. Jamisola, N. Subaschandar, L. O. Mohutsiwa","doi":"10.1109/ICUAS51884.2021.9476744","DOIUrl":null,"url":null,"abstract":"This study analyzes the thrust-to-weight ratio of a multi-rotor drones with respect to six different parameters using neural network. The parameters are the model weight, number of propellers, frame size, propeller diameter, propeller pitch and number of blades. An online calculation tool called eCalc is used to collect data to build a neural network model. The model has an accuracy of 97% when compared to an eCalc computed data. From this model, we optimize the thrust-to-weight ratio using gradient descent method initialized from the collected eCalc data. We ran another optimization computation by fixing two parameters to satisfy available components in the market. Optimization results are showed and analyzed.","PeriodicalId":423195,"journal":{"name":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS51884.2021.9476744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study analyzes the thrust-to-weight ratio of a multi-rotor drones with respect to six different parameters using neural network. The parameters are the model weight, number of propellers, frame size, propeller diameter, propeller pitch and number of blades. An online calculation tool called eCalc is used to collect data to build a neural network model. The model has an accuracy of 97% when compared to an eCalc computed data. From this model, we optimize the thrust-to-weight ratio using gradient descent method initialized from the collected eCalc data. We ran another optimization computation by fixing two parameters to satisfy available components in the market. Optimization results are showed and analyzed.
基于六输入参数神经网络的多旋翼无人机推重比优化
本文利用神经网络分析了多旋翼无人机在6个不同参数下的推重比。参数为机型重量、螺旋桨数量、机架尺寸、螺旋桨直径、螺旋桨节距和叶片数量。一个叫做eCalc的在线计算工具被用来收集数据来建立一个神经网络模型。与eCalc计算的数据相比,该模型的准确率为97%。在此模型的基础上,采用梯度下降法对所收集的eCalc数据进行初始化,优化推重比。我们通过确定两个参数来满足市场上可用的组件,进行了另一次优化计算。给出了优化结果并进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信