Microcalcifications segmentation using three edge detection techniques

S. S. Yasiran, A. K. Jumaat, A. Malek, Fatin Hanani Hashim, Nor Dhaniah Nasrir, Syarifah Nurul Azirah Sayed Hassan, Normah Ahmad, Rozi Mahmud
{"title":"Microcalcifications segmentation using three edge detection techniques","authors":"S. S. Yasiran, A. K. Jumaat, A. Malek, Fatin Hanani Hashim, Nor Dhaniah Nasrir, Syarifah Nurul Azirah Sayed Hassan, Normah Ahmad, Rozi Mahmud","doi":"10.1109/ICEDSA.2012.6507798","DOIUrl":null,"url":null,"abstract":"Edge detection has been widely used especially in medical image processing field. In this paper we are comparing Sobel, Prewitt and Laplacian of Gaussian (LoG) edge detection techniques in segmenting the boundary of microcalcifications. The edge detection must satisfy the breast phantom scoring criteria before the segmentation phase is carried out. Then, all of the edge detection techniques are implemented in the Enhanced Distance Active Contour (EDAC) model for the segmentation process. Results obtained from Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve shows that the Prewitt edge detection has the highest value of AUC, followed by the Sobel and LoG which are 0.79, 0.72 and 0.71 respectively.","PeriodicalId":132198,"journal":{"name":"2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2012.6507798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Edge detection has been widely used especially in medical image processing field. In this paper we are comparing Sobel, Prewitt and Laplacian of Gaussian (LoG) edge detection techniques in segmenting the boundary of microcalcifications. The edge detection must satisfy the breast phantom scoring criteria before the segmentation phase is carried out. Then, all of the edge detection techniques are implemented in the Enhanced Distance Active Contour (EDAC) model for the segmentation process. Results obtained from Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve shows that the Prewitt edge detection has the highest value of AUC, followed by the Sobel and LoG which are 0.79, 0.72 and 0.71 respectively.
基于三种边缘检测技术的微钙化分割
边缘检测尤其在医学图像处理领域得到了广泛的应用。在本文中,我们比较了Sobel, Prewitt和拉普拉斯高斯(LoG)边缘检测技术在分割微钙化边界方面的应用。在进行分割阶段之前,边缘检测必须满足乳房幻像评分标准。然后,在增强距离活动轮廓(EDAC)模型中实现所有边缘检测技术的分割过程。由ROC曲线下面积(Area Under the Curve, AUC)得到的结果表明,Prewitt边缘检测的AUC值最高,其次是Sobel和LoG,分别为0.79、0.72和0.71。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信