Transchromatic extensions in motivic bordism

A. Beaudry, M. Hill, Xiaolin Shi, Mingcong Zeng
{"title":"Transchromatic extensions in motivic bordism","authors":"A. Beaudry, M. Hill, Xiaolin Shi, Mingcong Zeng","doi":"10.1090/bproc/108","DOIUrl":null,"url":null,"abstract":"<p>We show a number of Toda brackets in the homotopy of the motivic bordism spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M upper G upper L\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">MGL</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and of the Real bordism spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M upper U Subscript double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:msub>\n <mml:mi>U</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">MU_{\\mathbb R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. These brackets are “red-shifting” in the sense that while the terms in the bracket will be of some chromatic height <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the bracket itself will be of chromatic height <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis n plus 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(n+1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Using these, we deduce a family of exotic multiplications in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript left-parenthesis asterisk comma asterisk right-parenthesis Baseline upper M upper G upper L\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:mi>M</mml:mi>\n <mml:mi>G</mml:mi>\n <mml:mi>L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi _{(\\ast ,\\ast )}MGL</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module structure of the motivic Morava <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-theories, including non-trivial multiplications by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. These in turn imply the analogous family of exotic multiplications in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi Subscript star Baseline upper M upper U Subscript double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>⋆<!-- ⋆ --></mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:mi>M</mml:mi>\n <mml:msub>\n <mml:mi>U</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi _{\\star }MU_\\mathbb R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module structure on the Real Morava <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-theories.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We show a number of Toda brackets in the homotopy of the motivic bordism spectrum M G L MGL and of the Real bordism spectrum M U R MU_{\mathbb R} . These brackets are “red-shifting” in the sense that while the terms in the bracket will be of some chromatic height n n , the bracket itself will be of chromatic height ( n + 1 ) (n+1) . Using these, we deduce a family of exotic multiplications in the π ( , ) M G L \pi _{(\ast ,\ast )}MGL -module structure of the motivic Morava K K -theories, including non-trivial multiplications by 2 2 . These in turn imply the analogous family of exotic multiplications in the π M U R \pi _{\star }MU_\mathbb R -module structure on the Real Morava K K -theories.

动力系统中的转色扩展
我们给出了动力谱MGL MGL和实谱MU R MU_{\mathbb R}同伦中的若干Toda括号。这些括号是“红移”的意思是,虽然括号中的项的色高是n n,但括号本身的色高是(n+1) (n+1)。利用这些,我们推导出了在动机Morava K -理论的π(∗,∗)MGL \pi _{(\ast,\ast)}MGL -模结构中的一类奇异乘法,包括非平凡乘2 2。这些反过来又暗示了在真实Morava K -理论上π - - - U R \pi _{\星}MU_\mathbb R - -模结构中的类似奇异乘法族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信