QoE-Guaranteed Heterogeneous Task Offloading with Deep Reinforcement Learning in Edge Computing

Zhiwen Zhou, Yingbo Wu, Jiaxin Hou
{"title":"QoE-Guaranteed Heterogeneous Task Offloading with Deep Reinforcement Learning in Edge Computing","authors":"Zhiwen Zhou, Yingbo Wu, Jiaxin Hou","doi":"10.1109/CCIS57298.2022.10016367","DOIUrl":null,"url":null,"abstract":"In edge-enabled Internet-of-Things (IoT), various IoT applications commonly generate heterogeneous tasks. Existing heterogeneous task offloading methods are developed to guarantee the Quality-of-Service (QoS), instead of the Quality-of-Experience (QoE) from the user’s perspective. However, QoE-guaranteed heterogeneous task offloading can significantly improve the actual user experiences of IoT applications. In this paper, the heterogeneity of offloading tasks is categorized as delay-aware, energy-aware, and privacy-aware. We define a novel QoE metric and adopt a statistical policy to relax the deterministic constraints of heterogeneous tasks to improve the offloading success rate. Furthermore, we formulate the QoE-guaranteed heterogeneous tasks offloading problem as a Mixed-integer Nonlinear Programming (MINLP) problem. Conventional numerical optimization methods are inefficient in solving such problems, therefore, we apply a Deep Reinforcement Learning (DRL) algorithm to make the optimal offloading decision that satisfies the offloading intention of the task. Experiment results show that our algorithm effectively guarantees the global QoE performance and improves the offloading success rate of heterogeneous tasks.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"297 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS57298.2022.10016367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In edge-enabled Internet-of-Things (IoT), various IoT applications commonly generate heterogeneous tasks. Existing heterogeneous task offloading methods are developed to guarantee the Quality-of-Service (QoS), instead of the Quality-of-Experience (QoE) from the user’s perspective. However, QoE-guaranteed heterogeneous task offloading can significantly improve the actual user experiences of IoT applications. In this paper, the heterogeneity of offloading tasks is categorized as delay-aware, energy-aware, and privacy-aware. We define a novel QoE metric and adopt a statistical policy to relax the deterministic constraints of heterogeneous tasks to improve the offloading success rate. Furthermore, we formulate the QoE-guaranteed heterogeneous tasks offloading problem as a Mixed-integer Nonlinear Programming (MINLP) problem. Conventional numerical optimization methods are inefficient in solving such problems, therefore, we apply a Deep Reinforcement Learning (DRL) algorithm to make the optimal offloading decision that satisfies the offloading intention of the task. Experiment results show that our algorithm effectively guarantees the global QoE performance and improves the offloading success rate of heterogeneous tasks.
边缘计算中基于深度强化学习的qos保证异构任务卸载
在边缘物联网(IoT)中,各种物联网应用通常会生成异构任务。现有的异构任务卸载方法是为了保证服务质量(QoS),而不是从用户的角度保证体验质量(QoE)。然而,qos保证的异构任务卸载可以显著改善物联网应用的实际用户体验。本文将卸载任务的异构性分为延迟感知、能量感知和隐私感知。我们定义了一个新的QoE度量,并采用统计策略来放宽异构任务的确定性约束,以提高卸载成功率。进一步,我们将保证qos的异构任务卸载问题表述为混合整数非线性规划(MINLP)问题。传统的数值优化方法在解决此类问题时效率低下,因此,我们采用深度强化学习(DRL)算法来做出满足任务卸载意图的最优卸载决策。实验结果表明,该算法有效地保证了全局QoE性能,提高了异构任务的卸载成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信