Optical trapping with cylindrical vector beams

Baoli Yao, Shaohui Yan, M. Lei, Fei Peng, Baiheng Ma, Tong Ye
{"title":"Optical trapping with cylindrical vector beams","authors":"Baoli Yao, Shaohui Yan, M. Lei, Fei Peng, Baiheng Ma, Tong Ye","doi":"10.1109/FOI.2011.6154814","DOIUrl":null,"url":null,"abstract":"Recent development of cylindrical vector beams prompts its application in optical trapping, which shows more effective and improved trapping efficiency in contrast to the traditional Gaussian beam of spatially homogeneous polarization. Using the T-matrix method and vectorial diffraction theory, we calculated and compared the radiation forces exerted on dielectric particles respectively by the linearly polarized, radially polarized and azimuthally polarized beams. Theoretical calculations show that the radially polarized beam can improve the axial trapping efficiency of high-refractive-index larger particles by reducing the scattering force due to the vanishing axial component of Poynting vector near the focus, while the azimuthally polarized beam can not only steadily trap low-refractive-index small particles at the focus center but also can trap multiple high-refractive-index particles around the focus center in virtue of the hollow-ring configuration. The dependences of the trapping efficiencies on the beam parameters, particle size and the numerical aperture of objective lens are discussed. The performances of optical trapping, manipulating and sorting of biological cells, organelles and various micro-particles are demonstrated.","PeriodicalId":240419,"journal":{"name":"2011 Functional Optical Imaging","volume":"747 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Functional Optical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOI.2011.6154814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent development of cylindrical vector beams prompts its application in optical trapping, which shows more effective and improved trapping efficiency in contrast to the traditional Gaussian beam of spatially homogeneous polarization. Using the T-matrix method and vectorial diffraction theory, we calculated and compared the radiation forces exerted on dielectric particles respectively by the linearly polarized, radially polarized and azimuthally polarized beams. Theoretical calculations show that the radially polarized beam can improve the axial trapping efficiency of high-refractive-index larger particles by reducing the scattering force due to the vanishing axial component of Poynting vector near the focus, while the azimuthally polarized beam can not only steadily trap low-refractive-index small particles at the focus center but also can trap multiple high-refractive-index particles around the focus center in virtue of the hollow-ring configuration. The dependences of the trapping efficiencies on the beam parameters, particle size and the numerical aperture of objective lens are discussed. The performances of optical trapping, manipulating and sorting of biological cells, organelles and various micro-particles are demonstrated.
圆柱形矢量光束的光捕获
近年来圆柱矢量光束的发展促进了它在光捕获中的应用,与空间均匀偏振的传统高斯光束相比,它显示出更有效和更高的捕获效率。利用t矩阵法和矢量衍射理论,分别计算并比较了线极化、径向极化和方位角极化光束作用在介质粒子上的辐射力。理论计算表明,径向偏振光束由于在焦点附近坡印亭矢量轴向分量的消失而减小了散射力,从而提高了高折射率大粒子的轴向捕获效率;而方向偏振光束不仅可以在焦点中心稳定地捕获低折射率小粒子,而且可以利用空心环结构在焦点中心周围捕获多个高折射率粒子。讨论了光束参数、粒子尺寸和物镜数值孔径对捕获效率的影响。展示了生物细胞、细胞器和各种微粒的光学捕获、操纵和分选性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信