{"title":"Design and implementation of an adaptive neuro-fuzzy inference system on an FPGA used for nonlinear function generation","authors":"H. J. B. Saldana, C. S. Cárdenas","doi":"10.1109/ANDESCON.2010.5633065","DOIUrl":null,"url":null,"abstract":"This paper presents a digital system architecture for a two-input one-output zero order ANFIS (Adaptive Neuro-Fuzzy Inference System) and its implementation on an FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware Description Language). The designed system is used for nonlinear function generation. First, a nonlinear function is chosen and off-line training is carried out using MATLAB ANFIS to obtain the premise and consequence parameters of the fuzzy rules. Then, these parameters are converted to a binary fixed-point representation and are stored in read-only memories of the VHDL code. Finally, simulations are performed to verify the system operation and to evaluate the system response time for given input data.","PeriodicalId":359559,"journal":{"name":"2010 IEEE ANDESCON","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE ANDESCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANDESCON.2010.5633065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents a digital system architecture for a two-input one-output zero order ANFIS (Adaptive Neuro-Fuzzy Inference System) and its implementation on an FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware Description Language). The designed system is used for nonlinear function generation. First, a nonlinear function is chosen and off-line training is carried out using MATLAB ANFIS to obtain the premise and consequence parameters of the fuzzy rules. Then, these parameters are converted to a binary fixed-point representation and are stored in read-only memories of the VHDL code. Finally, simulations are performed to verify the system operation and to evaluate the system response time for given input data.