Design and implementation of an adaptive neuro-fuzzy inference system on an FPGA used for nonlinear function generation

H. J. B. Saldana, C. S. Cárdenas
{"title":"Design and implementation of an adaptive neuro-fuzzy inference system on an FPGA used for nonlinear function generation","authors":"H. J. B. Saldana, C. S. Cárdenas","doi":"10.1109/ANDESCON.2010.5633065","DOIUrl":null,"url":null,"abstract":"This paper presents a digital system architecture for a two-input one-output zero order ANFIS (Adaptive Neuro-Fuzzy Inference System) and its implementation on an FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware Description Language). The designed system is used for nonlinear function generation. First, a nonlinear function is chosen and off-line training is carried out using MATLAB ANFIS to obtain the premise and consequence parameters of the fuzzy rules. Then, these parameters are converted to a binary fixed-point representation and are stored in read-only memories of the VHDL code. Finally, simulations are performed to verify the system operation and to evaluate the system response time for given input data.","PeriodicalId":359559,"journal":{"name":"2010 IEEE ANDESCON","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE ANDESCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANDESCON.2010.5633065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a digital system architecture for a two-input one-output zero order ANFIS (Adaptive Neuro-Fuzzy Inference System) and its implementation on an FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware Description Language). The designed system is used for nonlinear function generation. First, a nonlinear function is chosen and off-line training is carried out using MATLAB ANFIS to obtain the premise and consequence parameters of the fuzzy rules. Then, these parameters are converted to a binary fixed-point representation and are stored in read-only memories of the VHDL code. Finally, simulations are performed to verify the system operation and to evaluate the system response time for given input data.
基于FPGA的非线性函数生成自适应神经模糊推理系统的设计与实现
本文提出了一种双输入一输出零阶自适应神经模糊推理系统(ANFIS)的数字系统架构,并利用VHSIC硬件描述语言在FPGA(现场可编程门阵列)上实现。所设计的系统用于非线性函数生成。首先,选取非线性函数,利用MATLAB ANFIS进行离线训练,得到模糊规则的前提参数和结果参数;然后,将这些参数转换为二进制定点表示,并存储在VHDL代码的只读存储器中。最后,进行仿真以验证系统运行并评估给定输入数据的系统响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信