Modeling Fraud in Residential Power Usage

Pallab Ganguly, Sourav Dutta, M. Nasipuri, S. Tewari
{"title":"Modeling Fraud in Residential Power Usage","authors":"Pallab Ganguly, Sourav Dutta, M. Nasipuri, S. Tewari","doi":"10.1109/SEGE55279.2022.9889754","DOIUrl":null,"url":null,"abstract":"Understanding patterns of power usage is fundamental to the security goals of automation in the energy sector. Security aspects include data corruption via cyber-attacks, device tampering, or bypassing meter readings in energy theft. Although the mechanisms of abuse vary, persistent corruption generates patterns that statistically deviate from the designs of normal power usage. In this paper, we study power usage using both unsupervised and supervised techniques. The clustering algorithm creates energy profiles corresponding to a threat level hierarchy. We define a test in a proper statistical context by clearly specifying the fraud model (allowing simulation) to permit the analysis of the specificity and sensitivity of the model. The variance across meter readings changes over months, and the Gamma distribution fits nicely as a statistical model. Sensitivity analysis shows that detection accuracy is generally above 70% and identifies the threat level accurately. As expected, the accuracy varies over months and is lower during the months of summer. Detecting fraud in power usage is a significant problem and is an active area of research. It is essential to use the proper statistical measures to compare tests using diverse techniques.","PeriodicalId":338339,"journal":{"name":"2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGE55279.2022.9889754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding patterns of power usage is fundamental to the security goals of automation in the energy sector. Security aspects include data corruption via cyber-attacks, device tampering, or bypassing meter readings in energy theft. Although the mechanisms of abuse vary, persistent corruption generates patterns that statistically deviate from the designs of normal power usage. In this paper, we study power usage using both unsupervised and supervised techniques. The clustering algorithm creates energy profiles corresponding to a threat level hierarchy. We define a test in a proper statistical context by clearly specifying the fraud model (allowing simulation) to permit the analysis of the specificity and sensitivity of the model. The variance across meter readings changes over months, and the Gamma distribution fits nicely as a statistical model. Sensitivity analysis shows that detection accuracy is generally above 70% and identifies the threat level accurately. As expected, the accuracy varies over months and is lower during the months of summer. Detecting fraud in power usage is a significant problem and is an active area of research. It is essential to use the proper statistical measures to compare tests using diverse techniques.
住宅用电中的建模欺诈
了解电力使用模式是实现能源领域自动化安全目标的基础。安全方面包括通过网络攻击、设备篡改或在能源盗窃中绕过电表读数造成的数据损坏。尽管滥用的机制各不相同,但持续的腐败会产生统计上偏离正常电力使用设计的模式。在本文中,我们使用无监督和监督两种技术来研究电力使用。聚类算法创建与威胁等级层次相对应的能量分布。我们通过明确指定欺诈模型(允许模拟)来在适当的统计上下文中定义测试,以允许分析模型的特异性和敏感性。电表读数之间的差异随着月份的变化而变化,伽马分布很好地适合作为统计模型。灵敏度分析表明,检测准确率一般在70%以上,能够准确识别威胁级别。正如预期的那样,准确性在不同的月份有所不同,在夏季的几个月里较低。在电力使用中检测欺诈是一个重要的问题,也是一个活跃的研究领域。必须使用适当的统计措施来比较使用不同技术的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信