An Improved Method of Wavelets Basis Image Denoising Using Besov Norm Regularization

Hong Yang, Yiding Wang
{"title":"An Improved Method of Wavelets Basis Image Denoising Using Besov Norm Regularization","authors":"Hong Yang, Yiding Wang","doi":"10.1109/ICIG.2007.52","DOIUrl":null,"url":null,"abstract":"This paper proposes art improved image denoising algorithm which bases on wavelets thresholding - and uses the Besov norm regularization. Given a noisy image u<sub>0</sub> and suppose the target image u belongs to we need to solve the Besov space B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>) optimization problem: min ||u||<sup>q</sup> <sub>B</sub> <sup>a</sup> <sub>q</sub> <sub>(L</sub> <sup>p</sup> <sub>)</sub> <sub>+</sub> lambda/2|| u - u<sub>0</sub> ||<sup>2</sup> <sub>L</sub> <sup>2</sup> The existing algorithms used the fixed parameters p, q, a of B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>) to determine the threshold of wavelets reconstruction. Since different parts of an image may have different smoothness properties, and wavelet coefficients denote different frequency subbands of an image, the subimages at each wavelets scale level may have distinct smoothness properties. The larger the a is, the smoother the images are in B<sup>a</sup> <sub>q</sub>(L<sup>p</sup>). Taking the smoothness index a into account, we try to optimize the alpha<sub>j</sub> at different wavelet scale j with p,q fixed. Experimental results show that our method achieves better denoising effect with higher PSNR than the alpha fixed method.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper proposes art improved image denoising algorithm which bases on wavelets thresholding - and uses the Besov norm regularization. Given a noisy image u0 and suppose the target image u belongs to we need to solve the Besov space Ba q(Lp) optimization problem: min ||u||q B a q (L p ) + lambda/2|| u - u0 ||2 L 2 The existing algorithms used the fixed parameters p, q, a of Ba q(Lp) to determine the threshold of wavelets reconstruction. Since different parts of an image may have different smoothness properties, and wavelet coefficients denote different frequency subbands of an image, the subimages at each wavelets scale level may have distinct smoothness properties. The larger the a is, the smoother the images are in Ba q(Lp). Taking the smoothness index a into account, we try to optimize the alphaj at different wavelet scale j with p,q fixed. Experimental results show that our method achieves better denoising effect with higher PSNR than the alpha fixed method.
基于Besov范数正则化的改进小波基图像去噪方法
本文提出了基于小波阈值和贝索夫范数正则化的图像去噪算法。给定一幅带有噪声的图像u0,假设目标图像u属于我们需要解决的Besov空间Ba q(Lp)优化问题:min ||u| q Ba q(Lp) + lambda/2|| u - u0 || 2l2现有算法采用Ba q(Lp)的固定参数p、q、a来确定小波重构的阈值。由于图像的不同部分可能具有不同的平滑特性,并且小波系数表示图像的不同频率子带,因此每个小波尺度上的子图像可能具有不同的平滑特性。a越大,在Ba q(Lp)中图像越平滑。考虑到平滑指数a,我们尝试在p,q固定的情况下优化不同小波尺度j下的alphaj。实验结果表明,该方法比α固定方法获得了更好的去噪效果和更高的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信