Knowledge Representation for Cognitive Robotic Systems

Emil Vassev, M. Hinchey
{"title":"Knowledge Representation for Cognitive Robotic Systems","authors":"Emil Vassev, M. Hinchey","doi":"10.1109/ISORCW.2012.36","DOIUrl":null,"url":null,"abstract":"Cognitive robotics are autonomous systems capable of artificial reasoning. Such systems can be achieved with a logical approach, but still AI struggles to connect the abstract logic with real-world meanings. Knowledge representation and reasoning help to resolve this problem and to establish the vital connection between knowledge, perception, and action of a robot. Cognitive robots must use their knowledge against the perception of their world and generate appropriate actions in that world in compliance with some goals and beliefs. This paper presents an approach to multi-tier knowledge representation for cognitive robots, where ontologies are integrated with rules and Bayesian networks. The approach allows for efficient and comprehensive knowledge structuring and awareness based on logical and statistical reasoning.","PeriodicalId":408357,"journal":{"name":"2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Cognitive robotics are autonomous systems capable of artificial reasoning. Such systems can be achieved with a logical approach, but still AI struggles to connect the abstract logic with real-world meanings. Knowledge representation and reasoning help to resolve this problem and to establish the vital connection between knowledge, perception, and action of a robot. Cognitive robots must use their knowledge against the perception of their world and generate appropriate actions in that world in compliance with some goals and beliefs. This paper presents an approach to multi-tier knowledge representation for cognitive robots, where ontologies are integrated with rules and Bayesian networks. The approach allows for efficient and comprehensive knowledge structuring and awareness based on logical and statistical reasoning.
认知机器人系统的知识表示
认知机器人是能够进行人工推理的自主系统。这样的系统可以通过逻辑方法来实现,但人工智能仍然难以将抽象逻辑与现实世界的意义联系起来。知识表示和推理有助于解决这一问题,并在机器人的知识、感知和行动之间建立重要的联系。认知机器人必须使用他们的知识来对抗他们对世界的感知,并根据一些目标和信念在这个世界中产生适当的行动。提出了一种将本体与规则和贝叶斯网络相结合的认知机器人多层知识表示方法。该方法允许基于逻辑和统计推理的有效和全面的知识结构和意识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信