Describing Quantum-Inspired Linear Genetic Programming from symbolic regression problems

D. Dias, M. Pacheco
{"title":"Describing Quantum-Inspired Linear Genetic Programming from symbolic regression problems","authors":"D. Dias, M. Pacheco","doi":"10.1109/CEC.2012.6256634","DOIUrl":null,"url":null,"abstract":"Quantum-inspired evolutionary algorithms (QIEAs) exploit principles of quantum mechanics to improve the performance of classical evolutionary algorithms. This paper describes the latest version of a QIEA model (“Quantum-Inspired Linear Genetic Programming” - QILGP) to evolve machine code programs. QILGP is inspired on multilevel quantum systems and its operation is based on quantum individuals, which represent a superposition of all programs of search space (solutions). Symbolic regression problems and the current more efficient model to evolve machine code (AIMGP) are used in comparative tests, which aim to evaluate the performance impact of introducing demes (subpopulations) and a limited migration strategy in this version of QILGP. It outperforms AIMGP by obtaining better solutions with fewer parameters and operators. The performance improvement achieved by this latest version of QILGP encourages its ongoing and future enhancements. Thus, this paper concludes that the quantum inspiration paradigm can be a competitive approach to evolve programs more efficiently.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Quantum-inspired evolutionary algorithms (QIEAs) exploit principles of quantum mechanics to improve the performance of classical evolutionary algorithms. This paper describes the latest version of a QIEA model (“Quantum-Inspired Linear Genetic Programming” - QILGP) to evolve machine code programs. QILGP is inspired on multilevel quantum systems and its operation is based on quantum individuals, which represent a superposition of all programs of search space (solutions). Symbolic regression problems and the current more efficient model to evolve machine code (AIMGP) are used in comparative tests, which aim to evaluate the performance impact of introducing demes (subpopulations) and a limited migration strategy in this version of QILGP. It outperforms AIMGP by obtaining better solutions with fewer parameters and operators. The performance improvement achieved by this latest version of QILGP encourages its ongoing and future enhancements. Thus, this paper concludes that the quantum inspiration paradigm can be a competitive approach to evolve programs more efficiently.
从符号回归问题描述量子启发的线性遗传规划
量子启发的进化算法(QIEAs)利用量子力学原理来改进经典进化算法的性能。本文描述了QIEA模型(“量子启发线性遗传规划”- QILGP)的最新版本,用于进化机器代码程序。QILGP的灵感来自于多层量子系统,其运行基于量子个体,量子个体代表了所有搜索空间(解)程序的叠加。在比较测试中使用了符号回归问题和当前更有效的机器代码进化模型(AIMGP),旨在评估在该版本的QILGP中引入dees(亚种群)和有限迁移策略对性能的影响。它以更少的参数和操作符获得更好的解,优于AIMGP。这个最新版本的QILGP所实现的性能改进鼓励其正在进行的和未来的增强。因此,本文得出结论,量子启发范式可以是一种更有效地进化程序的竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信