Deep Learning Methods In Predicting Indonesia Composite Stock Price Index (IHSG)

Arief Fadhlurrahman Rasyid, Dewi Agushinta R., Dharma Tintri Ediraras
{"title":"Deep Learning Methods In Predicting Indonesia Composite Stock Price Index (IHSG)","authors":"Arief Fadhlurrahman Rasyid, Dewi Agushinta R., Dharma Tintri Ediraras","doi":"10.24203/ijcit.v10i5.153","DOIUrl":null,"url":null,"abstract":"The stock price changes at any time within seconds. The stock price is a time series data. Thus, it is necessary to have the best analysis model in predicting the stock price to make decisions to avoid losses in investing. In this research, the method used two models Deep Learning namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting Indonesia Composite Stock Price Index (IHSG). The dataset used is historical data from the Jakarta Composite Index (^JKSE) stock price in 2013-2020 obtained through Yahoo Finance. The results suggest that Deep learning methods with LSTM and GRU models can predict Indonesia Composite Stock Price Index (IHSG). Based on the test results obtained RMSE value of 71.28959454502723 with an accuracy rate of 92.39% for LSTM models and obtained RMSE value of 70.61870739073838 with an accuracy rate of 96.77% on GRU models.","PeriodicalId":359510,"journal":{"name":"International Journal of Computer and Information Technology(2279-0764)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Information Technology(2279-0764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ijcit.v10i5.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The stock price changes at any time within seconds. The stock price is a time series data. Thus, it is necessary to have the best analysis model in predicting the stock price to make decisions to avoid losses in investing. In this research, the method used two models Deep Learning namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting Indonesia Composite Stock Price Index (IHSG). The dataset used is historical data from the Jakarta Composite Index (^JKSE) stock price in 2013-2020 obtained through Yahoo Finance. The results suggest that Deep learning methods with LSTM and GRU models can predict Indonesia Composite Stock Price Index (IHSG). Based on the test results obtained RMSE value of 71.28959454502723 with an accuracy rate of 92.39% for LSTM models and obtained RMSE value of 70.61870739073838 with an accuracy rate of 96.77% on GRU models.
深度学习方法预测印尼综合股价指数(IHSG)
股票价格随时在几秒钟内变化。股票价格是一个时间序列数据。因此,在预测股票价格时,需要有最好的分析模型来做出决策,以避免投资损失。在本研究中,该方法使用了两个深度学习模型,即长短期记忆(LSTM)和门控循环单元(GRU)来预测印度尼西亚综合股价指数(IHSG)。使用的数据集是通过雅虎财经获得的2013-2020年雅加达综合指数(^JKSE)股票价格的历史数据。结果表明,基于LSTM和GRU模型的深度学习方法可以预测印度尼西亚综合股票价格指数(IHSG)。根据测试结果,在LSTM模型上得到RMSE值为71.28959454502723,准确率为92.39%;在GRU模型上得到RMSE值为70.61870739073838,准确率为96.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信