Logarithmic modeling of BTI under dynamic circuit operation: Static, dynamic and long-term prediction

J. Velamala, K. Sutaria, H. Shimuzu, H. Awano, T. Sato, G. Wirth, Yu Cao
{"title":"Logarithmic modeling of BTI under dynamic circuit operation: Static, dynamic and long-term prediction","authors":"J. Velamala, K. Sutaria, H. Shimuzu, H. Awano, T. Sato, G. Wirth, Yu Cao","doi":"10.1109/IRPS.2013.6532063","DOIUrl":null,"url":null,"abstract":"Bias temperature instability (BTI) is the dominant source of aging in nanoscale transistors. Recent works show the role of charge trapping/de-trapping (T-D) in BTI through discrete Vth shifts, with the degradation exhibiting an excessive amount of randomness. Furthermore, modern circuits employ dynamic voltage scaling (DVS) where Vdd is tuned, complicating the aging effect. It becomes challenging to predict long-term aging in an actual circuit under statistical variation and DVS. To accurately predict the degradation in these circumstances, this work (1) examines the principles of T-D, thereby proposing static and cycle-to-cycle (dynamic) models under voltage tuning in DVS; (2) presents a long-term model, estimating a tight upper bound of dynamic aging; (3) comprehensively validates the new set of models with 65nm silicon data. The proposed aging models accurately capture the recovery behavior in dynamic operations, reducing the unnecessary margin and enhancing the simulation efficiency for aging estimation during the design stage.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6532063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Bias temperature instability (BTI) is the dominant source of aging in nanoscale transistors. Recent works show the role of charge trapping/de-trapping (T-D) in BTI through discrete Vth shifts, with the degradation exhibiting an excessive amount of randomness. Furthermore, modern circuits employ dynamic voltage scaling (DVS) where Vdd is tuned, complicating the aging effect. It becomes challenging to predict long-term aging in an actual circuit under statistical variation and DVS. To accurately predict the degradation in these circumstances, this work (1) examines the principles of T-D, thereby proposing static and cycle-to-cycle (dynamic) models under voltage tuning in DVS; (2) presents a long-term model, estimating a tight upper bound of dynamic aging; (3) comprehensively validates the new set of models with 65nm silicon data. The proposed aging models accurately capture the recovery behavior in dynamic operations, reducing the unnecessary margin and enhancing the simulation efficiency for aging estimation during the design stage.
动态电路运行下BTI的对数建模:静态、动态和长期预测
偏置温度不稳定性(BTI)是纳米晶体管老化的主要原因。最近的研究表明,电荷捕获/解捕获(T-D)在BTI中通过离散的Vth移位发挥作用,其退化表现出过多的随机性。此外,现代电路采用动态电压缩放(DVS),其中Vdd被调谐,使老化效应复杂化。在统计变化和DVS的作用下,对实际电路的长期老化进行预测是一项挑战。为了准确地预测这些情况下的退化,本工作(1)检查了T-D原理,从而提出了分布式交换机电压调谐下的静态和周期到周期(动态)模型;(2)提出了一个长期模型,估计了动态老化的严格上界;(3)用65nm硅片数据对新模型集进行全面验证。提出的老化模型准确地捕捉了动态运行中的恢复行为,减少了不必要的余量,提高了设计阶段老化估计的仿真效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信