Sparse multiplication for skew polynomials

M. Giesbrecht, Qiao-Long Huang, É. Schost
{"title":"Sparse multiplication for skew polynomials","authors":"M. Giesbrecht, Qiao-Long Huang, É. Schost","doi":"10.1145/3373207.3404023","DOIUrl":null,"url":null,"abstract":"Consider the skew polynomial ring L[x; σ], where L is a field and σ is an automorphism of L of order r. We present two randomized algorithms for the multiplication of sparse skew polynomials in L[x;σ]. The first algorithm is Las Vegas; it relies on evaluation and interpolation on a normal basis, at successive powers of a normal element. For inputs A, B ∈ L[x; σ] of degrees at most d, its expected runtime is O~(max(d,r)rRω-2) operations in K, where K = Lσ is the fixed field of σ in L and R ≤ r is the size of the Minkowski sum supp(A) + supp(B) taken modulo r; here, the supports supp(A), supp(B) are the exponents of non-zero terms in A and B. The second algorithm is Monte Carlo; it is \"super-sparse\", in the sense that its expected runtime is O~(log(d)Srω), where S is the size of supp(A) + supp(B). Using a suitable form of Kronecker substitution, we extend this second algorithm to handle multivariate polynomials, for certain families of extensions.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Consider the skew polynomial ring L[x; σ], where L is a field and σ is an automorphism of L of order r. We present two randomized algorithms for the multiplication of sparse skew polynomials in L[x;σ]. The first algorithm is Las Vegas; it relies on evaluation and interpolation on a normal basis, at successive powers of a normal element. For inputs A, B ∈ L[x; σ] of degrees at most d, its expected runtime is O~(max(d,r)rRω-2) operations in K, where K = Lσ is the fixed field of σ in L and R ≤ r is the size of the Minkowski sum supp(A) + supp(B) taken modulo r; here, the supports supp(A), supp(B) are the exponents of non-zero terms in A and B. The second algorithm is Monte Carlo; it is "super-sparse", in the sense that its expected runtime is O~(log(d)Srω), where S is the size of supp(A) + supp(B). Using a suitable form of Kronecker substitution, we extend this second algorithm to handle multivariate polynomials, for certain families of extensions.
斜多项式的稀疏乘法
考虑斜多项式环L[x;σ],其中L是一个域,σ是r阶L的自同构。我们给出了L[x;σ]中稀疏偏态多项式乘法的两种随机算法。第一个算法是拉斯维加斯;它依赖于正常基础上的计算和插值,在正常元素的连续幂上。对于输入A, B∈L[x;σ],它的期望运行时间是O~(max(d,r)r ω-2)运算在K中,其中K = Lσ是σ在L中的固定域,r≤r是闵可夫斯基和supp(A) + supp(B)取模r的大小;这里,支持supp(A), supp(B)是A和B中非零项的指数。第二种算法是蒙特卡罗算法;它是“超稀疏”的,因为它的预期运行时间是O~(log(d) srm),其中S是supp(A) + supp(B)的大小。使用一种合适的Kronecker替换形式,我们扩展了第二种算法来处理多元多项式,对于某些扩展族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信