Certain Finite Sums Pertaining to Leibnitz, Harmonic and Other Special Numbers

Neslihan Kilar
{"title":"Certain Finite Sums Pertaining to Leibnitz, Harmonic and Other Special Numbers","authors":"Neslihan Kilar","doi":"10.54287/gujsa.1134534","DOIUrl":null,"url":null,"abstract":"The present manuscript deals with some certain finite sums and identities pertaining to some special numbers. Using generating functions methods, some relations and identities involving the Apostol type Euler and combinatorial numbers, and also the Fubini type numbers and polynomials, are given. Then, by using some certain classes of special finite sums involving the following rational sum which is defined by Simsek (2021b): y(r,ϑ)=∑_(b=0)^r▒〖(-1)^r/((1+b) ϑ^(b+1) 〖(ϑ-1)〗^(r-b+1) ),〗many new certain finite sums and formulas related to the Leibnitz, Harmonic, Changhee, and Daehee numbers are obtained. Moreover, some applications of these results are presented.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1134534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present manuscript deals with some certain finite sums and identities pertaining to some special numbers. Using generating functions methods, some relations and identities involving the Apostol type Euler and combinatorial numbers, and also the Fubini type numbers and polynomials, are given. Then, by using some certain classes of special finite sums involving the following rational sum which is defined by Simsek (2021b): y(r,ϑ)=∑_(b=0)^r▒〖(-1)^r/((1+b) ϑ^(b+1) 〖(ϑ-1)〗^(r-b+1) ),〗many new certain finite sums and formulas related to the Leibnitz, Harmonic, Changhee, and Daehee numbers are obtained. Moreover, some applications of these results are presented.
关于莱布尼兹数、调和数和其他特殊数的有限和
本文讨论了与某些特殊数有关的有限和和恒等式。利用生成函数的方法,给出了涉及阿波斯托尔型欧拉和组合数、富比尼型数和多项式的一些关系和恒等式。然后,利用Simsek (2021b)定义的y(r,)=∑_(b=0)^r ×〖(-1)^r/((1+b) ^(b+1)〖(ϑ-1)〗^(r-b+1)〗的一类特殊有限和,得到了与Leibnitz数、Harmonic数、Changhee数和Daehee数有关的许多新的有限和和公式。此外,还介绍了这些结果的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信