Meta Path-Based Information Entropy for Modeling Social Influence in Heterogeneous Information Networks

Yudi Yang, Lihua Zhou, Zhao Jin, Jinhua Yang
{"title":"Meta Path-Based Information Entropy for Modeling Social Influence in Heterogeneous Information Networks","authors":"Yudi Yang, Lihua Zhou, Zhao Jin, Jinhua Yang","doi":"10.1109/MDM.2019.00119","DOIUrl":null,"url":null,"abstract":"Influence is a complex and subtle force that changes the behavior of involved users. Measuring influence can benefit to identify the influential users, and also benefit to provide important insights into the design of social platforms and applications. However, most existing work on social influence analysis has focused on homogeneous information networks. Few studies systematically investigate how to mine the strength of influence between nodes in heterogeneous information networks. In this paper, we present a meta path-based information entropy for modeling social influence in heterogeneous information networks (MPIE). Through setting meta paths, MPIE not only flexibly integrates heterogeneous information, but also obtains potential link information to measure the influence of nodes. Experiments on real data sets demonstrate the effectiveness of our proposed method.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"479 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Influence is a complex and subtle force that changes the behavior of involved users. Measuring influence can benefit to identify the influential users, and also benefit to provide important insights into the design of social platforms and applications. However, most existing work on social influence analysis has focused on homogeneous information networks. Few studies systematically investigate how to mine the strength of influence between nodes in heterogeneous information networks. In this paper, we present a meta path-based information entropy for modeling social influence in heterogeneous information networks (MPIE). Through setting meta paths, MPIE not only flexibly integrates heterogeneous information, but also obtains potential link information to measure the influence of nodes. Experiments on real data sets demonstrate the effectiveness of our proposed method.
异构信息网络中基于元路径的信息熵社会影响建模
影响是一种复杂而微妙的力量,它改变了相关用户的行为。衡量影响力有利于识别有影响力的用户,也有利于为社交平台和应用程序的设计提供重要的见解。然而,大多数现有的社会影响分析工作都集中在同质信息网络上。很少有研究系统地研究如何挖掘异构信息网络中节点之间的影响强度。本文提出了一种基于元路径的信息熵模型,用于异构信息网络(MPIE)中的社会影响建模。通过设置元路径,MPIE不仅可以灵活地集成异构信息,还可以获取潜在的链路信息来衡量节点的影响。在实际数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信