A new approach to dimensionality reduction based on locality preserving LDA

Di Zhang, Jiazhong He
{"title":"A new approach to dimensionality reduction based on locality preserving LDA","authors":"Di Zhang, Jiazhong He","doi":"10.1109/FSKD.2013.6816254","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction (DR) techniques. However, LDA only captures global geometrical structure information of the data and ignores the geometrical variation of local data points of the same class. In this paper, a new supervised DR algorithm called local intraclass variation preserving LDA (LIPLDA) is proposed. We also show that the proposed algorithm can be extended to non-linear DR scenarios by applying the kernel trick.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction (DR) techniques. However, LDA only captures global geometrical structure information of the data and ignores the geometrical variation of local data points of the same class. In this paper, a new supervised DR algorithm called local intraclass variation preserving LDA (LIPLDA) is proposed. We also show that the proposed algorithm can be extended to non-linear DR scenarios by applying the kernel trick.
基于局域保持LDA的降维新方法
线性判别分析(LDA)是目前最流行的监督降维技术之一。然而,LDA仅捕获数据的全局几何结构信息,而忽略了同类局部数据点的几何变化。本文提出了一种新的监督DR算法——局部类内变化保持LDA (LIPLDA)。我们还表明,该算法可以通过应用核技巧扩展到非线性DR场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信