Branesh M. Pillai, Dileep Sivaraman, S. Ongwattanakul, J. Suthakorn
{"title":"Sensorless Based Gravity Torque Estimation and Friction Compensation for Surgical Robotic System","authors":"Branesh M. Pillai, Dileep Sivaraman, S. Ongwattanakul, J. Suthakorn","doi":"10.1109/ICELIE55228.2022.9969429","DOIUrl":null,"url":null,"abstract":"This article intends to provide content that is both basic and elementary, but at the same time discusses how solving difficult challenges when estimating the actual force in real-time teleoperation using a small-size DC motor as the end effector/ gripper of the surgical robot. The end-effector of the surgical robot, where the surgical tools have been attached, requires high-end precision. Most commercial surgical robotic systems calculate the real-time force by using traditional force sensors which encounters hindrance like lack of expected response (advance control), limited bandwidth, and requirement of force for its own operation. The paper introduces a Disturbance observer (DOB) based Reaction Torque observer (RTOB) as the sensor for the real-time gravity torque sensing in biomedical applications, with a focus on surgical robots. In order to enable both professional engineers and students with a limited understanding of control to use the article, mathematical complications are kept to a minimum.","PeriodicalId":178962,"journal":{"name":"2022 IEEE 9th International Conference on e-Learning in Industrial Electronics (ICELIE)","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Conference on e-Learning in Industrial Electronics (ICELIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELIE55228.2022.9969429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This article intends to provide content that is both basic and elementary, but at the same time discusses how solving difficult challenges when estimating the actual force in real-time teleoperation using a small-size DC motor as the end effector/ gripper of the surgical robot. The end-effector of the surgical robot, where the surgical tools have been attached, requires high-end precision. Most commercial surgical robotic systems calculate the real-time force by using traditional force sensors which encounters hindrance like lack of expected response (advance control), limited bandwidth, and requirement of force for its own operation. The paper introduces a Disturbance observer (DOB) based Reaction Torque observer (RTOB) as the sensor for the real-time gravity torque sensing in biomedical applications, with a focus on surgical robots. In order to enable both professional engineers and students with a limited understanding of control to use the article, mathematical complications are kept to a minimum.