{"title":"Design and Numerical Investigation of Rudder With Leading-Edge Protuberances","authors":"Wencai Zhu, H. Gao","doi":"10.1115/DETC2018-85033","DOIUrl":null,"url":null,"abstract":"The marine rudder with leading-edge protuberances is numerically investigated by SST k-ω turbulence model in present investigations. The newly designed rudder has a sinusoidal leading-edge profile along the spanwise direction. The numerical results show that the newly designed rudder helps to improve the lift coefficient of the rudder. The efficiency of the rudder is improved by adopting the leading-edge protuberances. The results are analyzed by means of streamlines and pressure coefficient. The leading-edge protuberances can delay or overcome the stall. The effect of leading-edge protuberances on the pressure coefficient of pressure surface is very small. However, the pressure coefficient of the suction surface is changed in the vicinity of leading-edge.","PeriodicalId":375011,"journal":{"name":"Volume 7: 30th International Conference on Design Theory and Methodology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 30th International Conference on Design Theory and Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The marine rudder with leading-edge protuberances is numerically investigated by SST k-ω turbulence model in present investigations. The newly designed rudder has a sinusoidal leading-edge profile along the spanwise direction. The numerical results show that the newly designed rudder helps to improve the lift coefficient of the rudder. The efficiency of the rudder is improved by adopting the leading-edge protuberances. The results are analyzed by means of streamlines and pressure coefficient. The leading-edge protuberances can delay or overcome the stall. The effect of leading-edge protuberances on the pressure coefficient of pressure surface is very small. However, the pressure coefficient of the suction surface is changed in the vicinity of leading-edge.