A signal decomposition based Kalman smoother for T-wave alternans detection

E. K. Roonizi, R. Sassi
{"title":"A signal decomposition based Kalman smoother for T-wave alternans detection","authors":"E. K. Roonizi, R. Sassi","doi":"10.1109/AEIT.2015.7415278","DOIUrl":null,"url":null,"abstract":"The paper introduces an Extended Kalman Smoother (EKS) for T-wave alternans (TWA) detection, based on a dynamical model which is not directly dependent on amplitude (EKS3). In this framework we consider separate states for PQRS and an amplitude-free state model for T-wave. There are some theoretical advantages that EKS3 has over other frameworks recently introduced with the same aims (e.g., EKS6-4obs, Akhbari et al., 2014 and EKS25-4obs, Akhbari et al., 2013). For instance, no longer depending directly on the amplitude of the Gaussian kernel, it is able to model the nuances in the T-waves, even when small or abrupt changes happen in the signal. Moreover, it reduces the nonlinearity of the model and it uses only three states, resulting in a significant decrease in complexity. We compared the proposed method with EKS6-4obs and EKS25-4obs using data from the 2008 Physionet TWA challenge dataset. While all the methods showed similar performances in estimating the average TWA value, the reduced standard deviation displayed by EKS3 facilitates the adjudication of TWA's presence, when it assumes small values.","PeriodicalId":368119,"journal":{"name":"2015 AEIT International Annual Conference (AEIT)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEIT.2015.7415278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper introduces an Extended Kalman Smoother (EKS) for T-wave alternans (TWA) detection, based on a dynamical model which is not directly dependent on amplitude (EKS3). In this framework we consider separate states for PQRS and an amplitude-free state model for T-wave. There are some theoretical advantages that EKS3 has over other frameworks recently introduced with the same aims (e.g., EKS6-4obs, Akhbari et al., 2014 and EKS25-4obs, Akhbari et al., 2013). For instance, no longer depending directly on the amplitude of the Gaussian kernel, it is able to model the nuances in the T-waves, even when small or abrupt changes happen in the signal. Moreover, it reduces the nonlinearity of the model and it uses only three states, resulting in a significant decrease in complexity. We compared the proposed method with EKS6-4obs and EKS25-4obs using data from the 2008 Physionet TWA challenge dataset. While all the methods showed similar performances in estimating the average TWA value, the reduced standard deviation displayed by EKS3 facilitates the adjudication of TWA's presence, when it assumes small values.
基于卡尔曼平滑的t波交替检测
本文介绍了一种基于不直接依赖于振幅的动态模型(EKS3)的扩展卡尔曼平滑(EKS)用于t波交替(TWA)检测。在这个框架中,我们考虑了PQRS的分离状态和t波的无幅态模型。与最近引入的具有相同目标的其他框架相比,EKS3具有一些理论上的优势(例如,EKS6-4obs, Akhbari等人,2014年和EKS25-4obs, Akhbari等人,2013年)。例如,不再直接依赖于高斯核的振幅,它能够模拟t波中的细微差别,即使信号中发生了微小或突然的变化。此外,它减少了模型的非线性,并且只使用三种状态,从而大大降低了复杂性。我们使用来自2008年Physionet TWA挑战数据集的数据将所提出的方法与EKS6-4obs和EKS25-4obs进行了比较。虽然所有方法在估计TWA平均值方面都表现出相似的性能,但EKS3显示的减小的标准差有助于判断TWA的存在,当它假设较小的值时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信