Vector Control Based Speed and Flux estimation in Switched Reluctance Motor Using ANN Controller

S. Babitha, V. Kulkarni, Jyothi P Koujalagi
{"title":"Vector Control Based Speed and Flux estimation in Switched Reluctance Motor Using ANN Controller","authors":"S. Babitha, V. Kulkarni, Jyothi P Koujalagi","doi":"10.1109/RTEICT46194.2019.9016823","DOIUrl":null,"url":null,"abstract":"A switch reluctance motor (SRM) is individually excited, doubly-salient electric machine having characteristics of torque production due to variable reluctance. A increased activity in the intelligent control methods consisting artificial neural networks (ANN) and fuzzy have made them suitable for SRM applications. This paper presents a study of different controllers for switch reluctance motor. The stator current and flux are estimated using ANN Technique. The ANN controller uses a switching table and vector control method to generate gating signals. MATLAB/Simulink is used for fixed parameters of SRM. The advantages of the ANN model is that no prior knowledge is required (model or equation)","PeriodicalId":269385,"journal":{"name":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT46194.2019.9016823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A switch reluctance motor (SRM) is individually excited, doubly-salient electric machine having characteristics of torque production due to variable reluctance. A increased activity in the intelligent control methods consisting artificial neural networks (ANN) and fuzzy have made them suitable for SRM applications. This paper presents a study of different controllers for switch reluctance motor. The stator current and flux are estimated using ANN Technique. The ANN controller uses a switching table and vector control method to generate gating signals. MATLAB/Simulink is used for fixed parameters of SRM. The advantages of the ANN model is that no prior knowledge is required (model or equation)
基于ANN控制器的开关磁阻电机速度和磁链矢量控制
开关磁阻电动机(SRM)是一种单独励磁的双凸极电机,由于磁阻变化而具有产生转矩的特性。由人工神经网络(ANN)和模糊控制(fuzzy)组成的智能控制方法日益活跃,使其适合于SRM应用。本文对开关磁阻电机的不同控制器进行了研究。采用人工神经网络技术估计定子电流和磁通。人工神经网络控制器采用开关表和矢量控制方法产生门控信号。采用MATLAB/Simulink进行SRM的参数固定。人工神经网络模型的优点是不需要先验知识(模型或方程)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信