On the splitting method for the numerical solution of Boltzmann and lattice Boltzmann equations for gas flows in microsystems

G. Krivovichev, E. S. Marnopolskaya
{"title":"On the splitting method for the numerical solution of Boltzmann and lattice Boltzmann equations for gas flows in microsystems","authors":"G. Krivovichev, E. S. Marnopolskaya","doi":"10.1109/BALD.2016.7886538","DOIUrl":null,"url":null,"abstract":"The modification of the splitting method for single kinetic equation or for the system of kinetic equations with discrete velocities is considered. The modification is based on the iterative procedure for the implicit Euler approximation on the collision stage of the method. The optimization problem for the hybrid scheme for linear equation of an advection stage is solved. Reported results may be applied in fluid and gas dynamics problems for the flows in natural and mechanical microsystems.","PeriodicalId":328869,"journal":{"name":"2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BALD.2016.7886538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The modification of the splitting method for single kinetic equation or for the system of kinetic equations with discrete velocities is considered. The modification is based on the iterative procedure for the implicit Euler approximation on the collision stage of the method. The optimization problem for the hybrid scheme for linear equation of an advection stage is solved. Reported results may be applied in fluid and gas dynamics problems for the flows in natural and mechanical microsystems.
微系统气体流动玻尔兹曼方程和晶格玻尔兹曼方程数值解的分裂方法
考虑了对单个动力学方程或具有离散速度的动力学方程组的分裂方法的修正。修正是基于该方法碰撞阶段隐式欧拉近似的迭代过程。求解了平流级线性方程混合格式的优化问题。所报道的结果可应用于自然和机械微系统中流动的流体和气体动力学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信