Bjarke Gosvig Knudsen, Morten Jensen, Alex A. Birklykke, P. Koch, J. Christiansen, K. Laursen, Lars K. Alminde, Y. Le Moullec
{"title":"ADS-B in space: Decoder implementation and first results from the GATOSS mission","authors":"Bjarke Gosvig Knudsen, Morten Jensen, Alex A. Birklykke, P. Koch, J. Christiansen, K. Laursen, Lars K. Alminde, Y. Le Moullec","doi":"10.1109/BEC.2014.7320555","DOIUrl":null,"url":null,"abstract":"ADS-B is increasingly used for air traffic control in areas covered by terrestrial receivers; however, its limited range makes it unsuitable for other areas such as the oceans. To overcome this limitation, it has been proposed to receive ADS-B signals from low earth orbit nano-satellites and relay them to the terrestrial receivers. This paper gives an overview of the GATOSS mission and of its highly-sensitive ADS-B software-defined radio receiver payload. Details of the design and implementation of the receiver's decoder are introduced. The first real-life, space-based results show that ADS-B signals are indeed successfully received in space and retransmitted to a terrestrial station by the GATOSS nano-satellite orbiting at 700+ km altitudes, thus showing that GATOSS is capable of tracking flights, including transoceanic ones, from space.","PeriodicalId":348260,"journal":{"name":"2014 14th Biennial Baltic Electronic Conference (BEC)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th Biennial Baltic Electronic Conference (BEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2014.7320555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
ADS-B is increasingly used for air traffic control in areas covered by terrestrial receivers; however, its limited range makes it unsuitable for other areas such as the oceans. To overcome this limitation, it has been proposed to receive ADS-B signals from low earth orbit nano-satellites and relay them to the terrestrial receivers. This paper gives an overview of the GATOSS mission and of its highly-sensitive ADS-B software-defined radio receiver payload. Details of the design and implementation of the receiver's decoder are introduced. The first real-life, space-based results show that ADS-B signals are indeed successfully received in space and retransmitted to a terrestrial station by the GATOSS nano-satellite orbiting at 700+ km altitudes, thus showing that GATOSS is capable of tracking flights, including transoceanic ones, from space.