A Study of Data Visualization of the Neo-coronary Pneumonia Epidemic

Xiaoquan Ou, Zuying Zhu, Junyan Chen, W. Xiao
{"title":"A Study of Data Visualization of the Neo-coronary Pneumonia Epidemic","authors":"Xiaoquan Ou, Zuying Zhu, Junyan Chen, W. Xiao","doi":"10.1109/ECICE50847.2020.9301964","DOIUrl":null,"url":null,"abstract":"The development of science and technology and the innovation of network technology enable big data technology. In the pandemic of coronary pneumonia in 2020, complex and large scale epidemic data, data analysis, and processing play an important role. Data visualization shows the advantages of rapid processing and intuitive display of data analysis, which helps people accurately and objectively predict the direction of the epidemic. This paper aims to create display pages on the front end of the epidemic data website with HTML, CSS, and JavaScript. The Flask framework of python is used to build a server to process the data on the back end. At the same time, ECharts is used to visualize and analyze the data, which finally displays the status and trend of the epidemic in each region in real-time.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"383 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9301964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of science and technology and the innovation of network technology enable big data technology. In the pandemic of coronary pneumonia in 2020, complex and large scale epidemic data, data analysis, and processing play an important role. Data visualization shows the advantages of rapid processing and intuitive display of data analysis, which helps people accurately and objectively predict the direction of the epidemic. This paper aims to create display pages on the front end of the epidemic data website with HTML, CSS, and JavaScript. The Flask framework of python is used to build a server to process the data on the back end. At the same time, ECharts is used to visualize and analyze the data, which finally displays the status and trend of the epidemic in each region in real-time.
新冠肺炎疫情数据可视化研究
科技的发展和网络技术的创新使大数据技术成为可能。在2020年冠状病毒肺炎大流行中,复杂、大规模的疫情数据、数据分析和处理发挥着重要作用。数据可视化显示了数据分析快速处理和直观显示的优势,有助于人们准确、客观地预测疫情走向。本文旨在利用HTML、CSS和JavaScript在疫情数据网站前端创建显示页面。python的Flask框架用于构建服务器来处理后端数据。同时利用ECharts对数据进行可视化分析,最终实时显示各地区疫情的现状和趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信