Query-Adaptive Feature Fusion Base on Convolutional Neural Networks for Remote Sensing Image Retrieval

Famao Ye, Shuxiu Chen, Xianglong Meng, Junwei Xin
{"title":"Query-Adaptive Feature Fusion Base on Convolutional Neural Networks for Remote Sensing Image Retrieval","authors":"Famao Ye, Shuxiu Chen, Xianglong Meng, Junwei Xin","doi":"10.1109/dsins54396.2021.9670607","DOIUrl":null,"url":null,"abstract":"Content-based Remote sensing image retrieval (CBRSIR) becomes important research with the volume of remote sensing images rapidly expanding. Many image features have been proposed for CBRSIR, hence it has become a big challenge to effectively fuse these features for alleviating the huge variation in retrieval performance among different image queries when a single image feature is used. We proposed a query-adaptive feature fusion method based on a convolutional neural networks (CNN) regression model. We use the CNN regression model to estimate the DCG value for each feature and assign different features with different weights for each query according to these DCG values. Meanwhile, we use the image-to-query-class distance to further improve retrieval performance. Experiments on UCMD show that the proposed method can improve the CBRSIR performance.","PeriodicalId":243724,"journal":{"name":"2021 International Conference on Digital Society and Intelligent Systems (DSInS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Society and Intelligent Systems (DSInS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/dsins54396.2021.9670607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Content-based Remote sensing image retrieval (CBRSIR) becomes important research with the volume of remote sensing images rapidly expanding. Many image features have been proposed for CBRSIR, hence it has become a big challenge to effectively fuse these features for alleviating the huge variation in retrieval performance among different image queries when a single image feature is used. We proposed a query-adaptive feature fusion method based on a convolutional neural networks (CNN) regression model. We use the CNN regression model to estimate the DCG value for each feature and assign different features with different weights for each query according to these DCG values. Meanwhile, we use the image-to-query-class distance to further improve retrieval performance. Experiments on UCMD show that the proposed method can improve the CBRSIR performance.
基于卷积神经网络的查询自适应特征融合遥感图像检索
随着遥感图像量的迅速增加,基于内容的遥感图像检索(CBRSIR)成为重要的研究方向。针对CBRSIR已经提出了许多图像特征,如何有效地融合这些特征,以缓解使用单个图像特征时不同图像查询之间检索性能的巨大差异,成为一个很大的挑战。提出了一种基于卷积神经网络(CNN)回归模型的查询自适应特征融合方法。我们使用CNN回归模型估计每个特征的DCG值,并根据这些DCG值为每个查询分配不同的特征和不同的权重。同时,我们利用图像到查询类的距离进一步提高检索性能。在UCMD上的实验表明,该方法可以提高CBRSIR的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信