Nonnegative matrix factorization with spatial prior and reference spectra application to remote hyperspectral image understanding

A. Zidi, J. Juan, J. Marot, S. Bourennane
{"title":"Nonnegative matrix factorization with spatial prior and reference spectra application to remote hyperspectral image understanding","authors":"A. Zidi, J. Juan, J. Marot, S. Bourennane","doi":"10.1109/EUVIP.2014.7018397","DOIUrl":null,"url":null,"abstract":"This paper dealswith nonnegativematrix factorization (NMF) dedicated to unmixing of hyperspectral images (HSI). We propose several improvements to better relate the output endmember spectra to the physical properties of the input data: firstly, we introduce a regularization term which enforces the closeness of the output endmembers to automatically selected reference spectra. Secondly, we account for these reference spectra and their locations in the initialization matrices. We exemplify our methods on self-acquired HSIs. The first scene is compound of leaves at the macroscopic level. In a controlled environment, we extract the spectra of three pigments. The second scene is acquired froman airplane: we distinguish between vegetation, water, and soil.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper dealswith nonnegativematrix factorization (NMF) dedicated to unmixing of hyperspectral images (HSI). We propose several improvements to better relate the output endmember spectra to the physical properties of the input data: firstly, we introduce a regularization term which enforces the closeness of the output endmembers to automatically selected reference spectra. Secondly, we account for these reference spectra and their locations in the initialization matrices. We exemplify our methods on self-acquired HSIs. The first scene is compound of leaves at the macroscopic level. In a controlled environment, we extract the spectra of three pigments. The second scene is acquired froman airplane: we distinguish between vegetation, water, and soil.
具有空间先验和参考光谱的非负矩阵分解在远程高光谱图像理解中的应用
本文研究了用于高光谱图像解混的非负矩阵分解方法。为了更好地将输出端元光谱与输入数据的物理性质联系起来,我们提出了几点改进:首先,我们引入了一个正则化项,该项增强了输出端元与自动选择的参考光谱的紧密性。其次,我们考虑了这些参考光谱及其在初始化矩阵中的位置。我们举例说明了我们的方法在自我获得的hsi。第一个场景是宏观层面的树叶复合。在受控环境下,我们提取了三种色素的光谱。第二个场景是从飞机上获得的:我们区分了植被、水和土壤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信