Portable, scalable, per-core power estimation for intelligent resource management

Bhavishya Goel, S. Mckee, R. Gioiosa, Karan Singh, M. Bhadauria, M. Cesati
{"title":"Portable, scalable, per-core power estimation for intelligent resource management","authors":"Bhavishya Goel, S. Mckee, R. Gioiosa, Karan Singh, M. Bhadauria, M. Cesati","doi":"10.1109/GREENCOMP.2010.5598313","DOIUrl":null,"url":null,"abstract":"Performance, power, and temperature are now all first-order design constraints. Balancing power efficiency, thermal constraints, and performance requires some means to convey data about real-time power consumption and temperature to intelligent resource managers. Resource managers can use this information to meet performance goals, maintain power budgets, and obey thermal constraints. Unfortunately, obtaining the required machine introspection is challenging. Most current chips provide no support for per-core power monitoring, and when support exists, it is not exposed to software. We present a methodology for deriving per-core power models using sampled performance counter values and temperature sensor readings. We develop application-independent models for four different (four- to eight-core) platforms, validate their accuracy, and show how they can be used to guide scheduling decisions in power-aware resource managers. Model overhead is negligible, and estimations exhibit 1.1%–5.2% per-suite median error on the NAS, SPEC OMP, and SPEC 2006 benchmarks (and 1.2%–4.4% overall).","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

Performance, power, and temperature are now all first-order design constraints. Balancing power efficiency, thermal constraints, and performance requires some means to convey data about real-time power consumption and temperature to intelligent resource managers. Resource managers can use this information to meet performance goals, maintain power budgets, and obey thermal constraints. Unfortunately, obtaining the required machine introspection is challenging. Most current chips provide no support for per-core power monitoring, and when support exists, it is not exposed to software. We present a methodology for deriving per-core power models using sampled performance counter values and temperature sensor readings. We develop application-independent models for four different (four- to eight-core) platforms, validate their accuracy, and show how they can be used to guide scheduling decisions in power-aware resource managers. Model overhead is negligible, and estimations exhibit 1.1%–5.2% per-suite median error on the NAS, SPEC OMP, and SPEC 2006 benchmarks (and 1.2%–4.4% overall).
用于智能资源管理的可移植、可扩展、每核功率估计
性能、功率和温度现在都是一阶设计约束。平衡功率效率、热约束和性能需要一些方法来将有关实时功耗和温度的数据传递给智能资源管理器。资源管理器可以使用这些信息来实现性能目标、维护电力预算并遵守热约束。不幸的是,获得所需的机器自省是具有挑战性的。目前大多数芯片都不支持每核电源监控,即使有支持,也不会暴露给软件。我们提出了一种使用采样性能计数器值和温度传感器读数来推导每个核心功率模型的方法。我们为四种不同的(四核到八核)平台开发了与应用程序无关的模型,验证了它们的准确性,并展示了如何使用它们来指导功耗感知资源管理器中的调度决策。模型开销可以忽略不计,在NAS、SPEC OMP和SPEC 2006基准测试中,每个套件的估计中值误差为1.1%-5.2%(总体为1.2%-4.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信