A Hybrid Approach Based on Gaussian Process Regression and LSTM for Remaining Useful Life Prediction of Lithium-ion Batteries

Xiaoyu Guo, Zikang Yang, Yujia Liu, Zhendu Fang, Zhongbao Wei
{"title":"A Hybrid Approach Based on Gaussian Process Regression and LSTM for Remaining Useful Life Prediction of Lithium-ion Batteries","authors":"Xiaoyu Guo, Zikang Yang, Yujia Liu, Zhendu Fang, Zhongbao Wei","doi":"10.1109/ITEC55900.2023.10187083","DOIUrl":null,"url":null,"abstract":"Accurate remaining useful life (RUL) prediction is of great importance to the battery management second-life utilization. This paper proposes a novel hybrid data-driven RUL prediction method based on Gaussian process regression (GPR) and long-short term memory neural network (LSTM). An initial prediction of RUL through LSTM is employed as the mean function of GPR instead of simply assuming it to be zero or a linear form. The aging data of four batteries from NASA data repository is used for model verification and comparison. The results show that the proposed LSTM-GPR approach has higher prediction accuracy than the traditional LSTM and GPR approaches with less training data.","PeriodicalId":234784,"journal":{"name":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC55900.2023.10187083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate remaining useful life (RUL) prediction is of great importance to the battery management second-life utilization. This paper proposes a novel hybrid data-driven RUL prediction method based on Gaussian process regression (GPR) and long-short term memory neural network (LSTM). An initial prediction of RUL through LSTM is employed as the mean function of GPR instead of simply assuming it to be zero or a linear form. The aging data of four batteries from NASA data repository is used for model verification and comparison. The results show that the proposed LSTM-GPR approach has higher prediction accuracy than the traditional LSTM and GPR approaches with less training data.
基于高斯过程回归和LSTM的锂离子电池剩余使用寿命预测混合方法
准确的剩余使用寿命(RUL)预测对电池管理、二次寿命利用具有重要意义。提出了一种基于高斯过程回归(GPR)和长短期记忆神经网络(LSTM)的混合数据驱动RUL预测方法。采用LSTM对RUL的初始预测作为探地雷达的均值函数,而不是简单地假设其为零或线性形式。利用NASA数据库中4节电池的老化数据进行模型验证和比较。结果表明,在训练数据较少的情况下,LSTM-GPR方法比传统LSTM和GPR方法具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信