{"title":"Genetic encoding of agent behavioral strategy","authors":"Stéphane Calderoni, P. Marcenac, R. Courdier","doi":"10.1109/ICMAS.1998.699234","DOIUrl":null,"url":null,"abstract":"The general framework tackled in this paper is the automatic generation of intelligent collective behaviors using genetic programming and reinforcement teaming. We define a behavior-based system relying on automatic design process using artificial evolution to synthesize high level behaviors for autonomous agents. Behavioral strategies are described by tree-based structures, and manipulated by generic evolving processes. Each strategy is dynamically evaluated during simulation, and is weighted by an adaptation function as a quality factor that reflects its relevance as good solution for the learning task. It is computed using heterogeneous reinforcement techniques associating immediate reinforcements and delayed reinforcements as dynamic progress estimators.","PeriodicalId":244857,"journal":{"name":"Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAS.1998.699234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The general framework tackled in this paper is the automatic generation of intelligent collective behaviors using genetic programming and reinforcement teaming. We define a behavior-based system relying on automatic design process using artificial evolution to synthesize high level behaviors for autonomous agents. Behavioral strategies are described by tree-based structures, and manipulated by generic evolving processes. Each strategy is dynamically evaluated during simulation, and is weighted by an adaptation function as a quality factor that reflects its relevance as good solution for the learning task. It is computed using heterogeneous reinforcement techniques associating immediate reinforcements and delayed reinforcements as dynamic progress estimators.