Joint tokenization, parsing, and translation

Yang Liu
{"title":"Joint tokenization, parsing, and translation","authors":"Yang Liu","doi":"10.1109/IUCS.2010.5666651","DOIUrl":null,"url":null,"abstract":"Natural language processing is all about ambiguities. In machine translation, tokenization and parsing mistakes due to segmentation and structural ambiguities potentially introduce translation errors. A well-known solution is to provide more alternatives by using compact representations such as lattice and forest. In this talk, I will introduce a technique that goes beyond using lattices and forests, which integrates tokenization, parsing, and translation in one system. Therefore, tokenization, parsing, and translation can interact with and benefit each other in a discriminative framework. Experimental results show that such integration significantly improves tokenization and translation performance.","PeriodicalId":108217,"journal":{"name":"2010 4th International Universal Communication Symposium","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Universal Communication Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCS.2010.5666651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Natural language processing is all about ambiguities. In machine translation, tokenization and parsing mistakes due to segmentation and structural ambiguities potentially introduce translation errors. A well-known solution is to provide more alternatives by using compact representations such as lattice and forest. In this talk, I will introduce a technique that goes beyond using lattices and forests, which integrates tokenization, parsing, and translation in one system. Therefore, tokenization, parsing, and translation can interact with and benefit each other in a discriminative framework. Experimental results show that such integration significantly improves tokenization and translation performance.
联合标记化、解析和翻译
自然语言处理是关于歧义的。在机器翻译中,由于分割和结构歧义导致的标记化和解析错误可能会导致翻译错误。一个众所周知的解决方案是通过使用紧凑的表示(如lattice和forest)来提供更多的替代方案。在这次演讲中,我将介绍一种超越使用格和森林的技术,它将标记化、解析和翻译集成在一个系统中。因此,标记化、解析和翻译可以在判别框架中相互作用并相互受益。实验结果表明,该方法显著提高了标记化和翻译性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信