A hardware accelerated approach for imaging flow cytometry

Dajung Lee, Pingfan Meng, Matthew Jacobsen, H. Tse, D. Carlo, R. Kastner
{"title":"A hardware accelerated approach for imaging flow cytometry","authors":"Dajung Lee, Pingfan Meng, Matthew Jacobsen, H. Tse, D. Carlo, R. Kastner","doi":"10.1109/FPL.2013.6645507","DOIUrl":null,"url":null,"abstract":"Imaging flow cytometry uses high-speed flows and a camera to capture morphological features of hundreds to thousands of cells per second. These morphological features can be useful to isolate sub-populations of cells for life science research and diagnostics. Our experimental setup utilizes a high speed 208×32 resolution CMOS camera, operating at over 140,000 frames per second (FPS). In each frame, the analysis routine detects the presence of an object, and performs morphology measurements. Real-time cell sorting requires a latency under 10 ms in addition to a throughput of 140,000 FPS. In this paper, we will describe GPU and FPGA accelerated implementations of the image analysis necessary for an automated cell sorting system. Our FPGA design results in a 38× speedup over software, providing 2,262 FPS with 11.9 ms of latency. Our GPU implementation shows a 22× speedup, supporting 1,318 FPS with 152 ms of latency.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Imaging flow cytometry uses high-speed flows and a camera to capture morphological features of hundreds to thousands of cells per second. These morphological features can be useful to isolate sub-populations of cells for life science research and diagnostics. Our experimental setup utilizes a high speed 208×32 resolution CMOS camera, operating at over 140,000 frames per second (FPS). In each frame, the analysis routine detects the presence of an object, and performs morphology measurements. Real-time cell sorting requires a latency under 10 ms in addition to a throughput of 140,000 FPS. In this paper, we will describe GPU and FPGA accelerated implementations of the image analysis necessary for an automated cell sorting system. Our FPGA design results in a 38× speedup over software, providing 2,262 FPS with 11.9 ms of latency. Our GPU implementation shows a 22× speedup, supporting 1,318 FPS with 152 ms of latency.
流式细胞术成像的硬件加速方法
成像流式细胞术使用高速流动和相机每秒捕捉数百到数千个细胞的形态特征。这些形态特征可用于分离细胞亚群,用于生命科学研究和诊断。我们的实验装置采用高速208×32分辨率CMOS相机,运行速度超过每秒14万帧(FPS)。在每一帧中,分析程序检测对象的存在,并执行形态学测量。实时单元分选需要10毫秒以下的延迟以及140,000 FPS的吞吐量。在本文中,我们将描述GPU和FPGA加速实现自动细胞分选系统所需的图像分析。我们的FPGA设计比软件有38倍的加速,提供2262 FPS和11.9 ms的延迟。我们的GPU实现显示了22倍的加速,支持1318 FPS和152毫秒的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信